We herein report for the first time the successful use of the dipeptidyl peptidase IV (DPPIV/CD26) prodrug approach to guanine derivatives such as the antiviral acyclovir (ACV). The solution- and solid-phase synthesis of the tetrapeptide amide prodrug 3 and the tripeptide ester conjugate 4 of acyclovir are reported. The synthesis of the demanding tetrapeptide amide prodrug of ACV 3 was first established in solution and successfully transferred onto solid support by using Ellman's dihydropyran (DHP) resin. In contrast with the valyl ester prodrug (valacyclovir, VACV), the tetrapeptide amide prodrug 3 and the tripeptide ester conjugate 4 of ACV proved fully stable in PBS. Both prodrugs converted to VACV (for 4) or ACV (for 3) upon exposure to purified DPPIV/CD26 or human or bovine serum. Vildagliptin, a potent inhibitor of DPPIV/CD26 efficiently inhibited the DPPIV/CD26-catalysed hydrolysis reaction. Both amide and ester prodrugs of ACV showed pronounced anti-herpetic activity in cell culture and significantly improved the water solubility in comparison with the parent drug.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2013.10.001DOI Listing

Publication Analysis

Top Keywords

tetrapeptide amide
12
amide prodrug
12
prodrug tripeptide
8
tripeptide ester
8
ester conjugate
8
prodrug
5
acv
5
novel water-soluble
4
water-soluble prodrugs
4
prodrugs acyclovir
4

Similar Publications

Branch-point syntheses in nonribosomal peptide assembly are rare but useful strategies to generate tripodal peptides with advantageous hexadentate iron-chelating capabilities, as seen in siderophores. However, the chemical logic underlying the peptide branching by nonribosomal peptide synthetase (NRPS) often remains complex and elusive. Here, we review the common strategies for the biosynthesis of branched nonribosomal peptides (NRPs) and present our biochemical investigation on the NRPS-catalyzed assembly of fimsbactin A, a branched mixed-ligand siderophore produced by the human pathogenic strain .

View Article and Find Full Text PDF

Introduction: The developed domestic retrodipeptide analogue of cholecystokinin tetrapeptide (CCK) (N-(6-phenylhexanoyl)-glycyltryptophan amide, or compound GB-115) with antagonistic properties in relation to CCK1 receptors has anxiolytic activity previously shown in preclinical and clinical studies. The aim of the study was to evaluate the anxiolytic effect of GB-115 as a tablet form with subchronic oral administration in comparison with phenazepam in nonhuman primates.

Materials And Methods: The study was conducted on four male rhesus monkeys (Macaca mulatta) aged 5.

View Article and Find Full Text PDF

Purpose: Neurotrophic keratopathy is part of the leprosy sequelae and causes progressive deterioration of visual acuity. Although leprosy is bacteriologically curable, there is currently no efficient treatment. Eye drops containing tetrapeptides, phenylalanine-glycine-leucine-methionine-amide (FGLM-NH) and serine-serine-serine-arginine (SSSR), derived from substance P and insulin-like growth factor 1, are clinically efficacious in the treatment of corneal epithelial disorders caused by neurotrophic keratopathy.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the evolution of the miniature conopeptide Li520, highlighting its disulfide isomerase activity by examining its structure and gene sequence.
  • The synthesized peptides, including Li520 and its variants, show varying disulfide reduction potentials, indicating their effectiveness in protein folding and disulfide exchange reactions.
  • Findings suggest that Li520's specific amino acid composition plays a crucial role in its functionality, and the peptide's evolution may aid in developing therapeutic peptides.
View Article and Find Full Text PDF

The synthesis of constrained 12-membered rings is notably difficult. The main challenges result from constraints during the linear peptide cyclization. Attempts to overcome constraints through excessive activation frequently cause peptidyl epimerization, while insufficient activation of the C-terminus hampers cyclization and promotes intermolecular oligomer formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!