Fast pyrolysis of potassium impregnated poplar wood and characterization of its influence on the formation as well as properties of pyrolytic products.

Bioresour Technol

Department of Forest Sciences and Research Institute for Agriculture and Life Science, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-921, Republic of Korea.

Published: December 2013

TGA results indicated that the maximum decomposition temperature of the biomass decreased from 373.9 to 359.0°C with increasing potassium concentration. For fast pyrolysis, char yield of potassium impregnated biomass doubled regardless of pyrolysis temperature compared to demineralized one. The presence of potassium also affected bio-oil properties. Water content increased from 14.4 to 19.7 wt% and viscosity decreased from 34 to 16.2 cSt, but the pH value of the bio-oil remained stable. Gas chromatography/mass spectroscopy (GC/MS) analysis revealed that potassium promoted thermochemical reactions, thus causing a decrease of levoglucosan and an increase of small molecules and lignin-derived phenols in bio-oil. Additionally, various forms of aromatic hydrocarbons, probably derived from lignins, were detected in non-condensed pyrolytic gas fractions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2013.09.132DOI Listing

Publication Analysis

Top Keywords

fast pyrolysis
8
potassium impregnated
8
potassium
5
pyrolysis potassium
4
impregnated poplar
4
poplar wood
4
wood characterization
4
characterization influence
4
influence formation
4
formation well
4

Similar Publications

In this study, the effect of additives on particulate matter (PM) and flue gas emissions during the co-combustion of poultry waste and pine woodchips in air and oxy-fuel combustion conditions was examined. The appropriate additive for the fuel mixture to reduce PM emissions has been selected by a fast screening method based on thermogravimetric analysis (TGA) in oxygen environment. Among the additives CaHPO, MgCO, MnCO, MgPO, kaolin, CaO, and Zn, the most suitable ones were determined as Zn and MgCO.

View Article and Find Full Text PDF

The development of copper-based materials with a high efficiency and low cost is desirable for use in iodine (I) remediation. Herein, Cu-nanoparticles-functionalized, ZIF-8 (Zeolite Imidazole Framework-8)-derived, nitrogen-doped carbon composites (Cu@Zn-NC) were synthesized by ball milling and pyrolysis processes. The as-prepared composites were characterized using SEM, BET, XRD, XPS, and FT-IR analyses.

View Article and Find Full Text PDF

Hydrogen production from biomass pyrolysis is attractive since it allows for green hydrogen production through feedstock and thermal conversion. However, the key limiting factors for hydrogen production are the high oxygen content, uneven heating of biomass pellets during the slow heating process, and insufficient depolymerization due to low reaction temperatures (low gas yields and low hydrogen content). To address these challenges, fast pyrolysis of super Arundo in NaOH-NaCO molten salt was carried out in this paper at 450 °C, 550 °C and 650 °C.

View Article and Find Full Text PDF

Qualitative and Quantitative Analysis of Tire Wear Particles (TWPs) in Road Dust Using a Novel Mode of Operation of TGA-GC/MS.

Environ Sci Technol Lett

January 2025

EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Rd, Edinburgh, EH9 3FJ, United Kingdom.

Detecting and quantifying tire wear particles (TWPs) in the environment pose a unique environmental challenge due to their chemical complexity. There are emerging concerns around TWPs due to their potential high numbers of particles released, outnumbering microplastics, as well as the leaching of toxic additives such as 6-PPD which has been linked to the death of salmon even when present at very low levels (<0.1 μg/L).

View Article and Find Full Text PDF

Nitrogen doping turns carbonaceous materials into fast-reacting catalysts for reductive dechlorination.

Environ Pollut

January 2025

Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark. Electronic address:

Nitrogen (N) doping of biomass prior pyrolysis has been identified as an effective approach for enhancing biochar catalytic reactivity. However, high-temperature pyrolysis of N-rich biomass may produce N-devoid biochars with high reactivity, calling for attention to the true causes of the reactivity increases and the role of nitrogen. In this study, N-doped wheat straw biochar (N-BC) materials were produced using urea as N dopant and different pyrolysis conditions, and their catalytic reactivity assessed for the reduction of trichloroethylene (TCE) by green rust (GR), a layered Fe(II)Fe(III) hydroxide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!