A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Feature correlation hypergraph: exploiting high-order potentials for multimodal recognition. | LitMetric

In computer vision and multimedia analysis, it is common to use multiple features (or multimodal features) to represent an object. For example, to well characterize a natural scene image, we typically extract a set of visual features to represent its color, texture, and shape. However, it is challenging to integrate multimodal features optimally. Since they are usually high-order correlated, e.g., the histogram of gradient (HOG), bag of scale invariant feature transform descriptors, and wavelets are closely related because they collaboratively reflect the image texture. Nevertheless, the existing algorithms fail to capture the high-order correlation among multimodal features. To solve this problem, we present a new multimodal feature integration framework. Particularly, we first define a new measure to capture the high-order correlation among the multimodal features, which can be deemed as a direct extension of the previous binary correlation. Therefore, we construct a feature correlation hypergraph (FCH) to model the high-order relations among multimodal features. Finally, a clustering algorithm is performed on FCH to group the original multimodal features into a set of partitions. Moreover, a multiclass boosting strategy is developed to obtain a strong classifier by combining the weak classifiers learned from each partition. The experimental results on seven popular datasets show the effectiveness of our approach.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCYB.2013.2285219DOI Listing

Publication Analysis

Top Keywords

multimodal features
24
feature correlation
8
correlation hypergraph
8
multimodal
8
features
8
features represent
8
capture high-order
8
high-order correlation
8
correlation multimodal
8
high-order
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!