Vibrational frequencies of 2-Hydroxy-4-Methoxybenzophenone (HMB) have been reassigned with the aid of normal coordinate analysis (NCA) following the scaled quantum mechanical force field (SQMFF) methodology. The conformational analyses were performed and the energies of the different possible conformers were determined. The geometry of different conformers of the compounds were optimized with B3LYP method using 6-311++G(d,p) basis set to characterize all stationary points as minima. The optimized structural parameters of the most stable conformer were used in the vibrational frequency calculations. The force constants obtained from the B3LYP/6-311++G(d,p) method have been utilized in the normal coordinate analysis. The temperature dependence of the thermodynamic properties, heat capacity at constant pressure (Cp), entropy (S) and enthalpy change (ΔH) for the compound was also determined by B3LYP/6-311++G(d,p) method. The total electron density and Molecular electrostatic potential surfaces of the molecules were constructed by Natural Bond Orbital analysis using B3LYP/6-311++G(d,p) method to display electrostatic potential (electron+nuclei) distribution, molecular shape, size, and dipole moments of the molecule. The electronic properties, HOMO and LUMO energies were measured.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2013.09.128DOI Listing

Publication Analysis

Top Keywords

b3lyp/6-311++gdp method
12
normal coordinate
8
coordinate analysis
8
electrostatic potential
8
analysis
5
molecular structure
4
structure nbo
4
nbo analysis
4
analysis electronic
4
electronic absorption
4

Similar Publications

Context: This article mainly studies three isomers of CHNO, namely 5-methyl-3,4-dinitro-1- (trinitromethyl) -1H pyrazole (1), 4-methyl-3,5-dinitro-1- (trinitromethyl) -1H pyrazole (2), and 3,5-bis (dinitromethyl) -4-nitro-1H-pyrazole (3). These three substances are excellent candidates for energetic materials, but their properties under external electric fields (EEF) have not been studied. Therefore, this article studied the properties of three isomers under EEF using density functional theory (DFT), and conducted statistical analysis on the obtained data, including the molecular structure, frontier molecular orbitals, surface electrostatic potential, and nitrate charge of the three isomers.

View Article and Find Full Text PDF

This research presents an innovative approach for synthesizing 2-amino-4H-chromene derivatives, utilizing 30 mg of NS-doped graphene oxide quantum dots (GOQDs) as a catalyst in a one-pot, three-component reaction conducted in ethanol. The NS-doped GOQDs were synthesized using a cost-effective bottom-up method through the condensation of citric acid (CA) with thiourea and the reaction was carried out at 185 C, resulting in the elimination of water. The catalytic performance of the synthesized NS-doped GOQDs resulted in high product yields, achieving up to 98% for the 2-amino-4H-chromene derivatives from aromatic aldehydes, malononitrile, resorcinol, -naphthol, and dimedone.

View Article and Find Full Text PDF

The Site of Protonation Affects the Dissociation of Protonated α- and β-Pinene Ions.

Rapid Commun Mass Spectrom

March 2025

Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada.

Rationale: In electrospray ionization and atmospheric pressure chemical ionization, the protonation site directly guides the ion's dissociation. But what if the site of protonation is ambiguous? In this study, we explored the unimolecular reactions of protonated α- and β-pinene ions with a combination of tandem mass spectrometry and theory. Each has multiple potential protonation sites that influence their chemistry.

View Article and Find Full Text PDF

R - C(S) - NH - N = CH - R [R = o-OCHCH & R = CHN (2-EBP), R = o-OCHCH & R = CHNO (2-EBM), R = p-OCHCH & R = CHN (4-EBP), and R = p-OCHCH & R = CHNO (4-EBM)] have been synthesized. The ligands have been verified via various spectroscopic methods such as IR, NMR, etc. Single-crystal X-ray diffraction methods were applied to identify the structure of 4-EBP.

View Article and Find Full Text PDF

Context: Schiff bases, which have intriguing properties in many areas, have been studied extensively in recent years due to their structural properties and biological activities. In this research, a novel water-soluble Schiff base complex, Catena-((μ-(E)-2-((4-methoxy-2-oxidobenzylidene) ammonio) ethane-1-sulfonato potassium, CHKNOS (CMOAESP), was synthesized by a one-step condensation reaction of 2-hydroxy-4-methoxy benzaldehyde and taurine with the yield of 65%, 0.333 g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!