Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The interaction between ionic liquids modified magnetic Fe3O4 (Fe2) and bovine serum albumin (BSA) is reported and is compared with NH2 functionalized magnetic nanoparticles Fe3O4 (Fe1) based on the UV-visible spectrum, steady-state fluorescence measurements, synchronous fluorescence and DSC methods. The results indicate a static quenching mechanism operating in both nanoparticles. The binding constant of the Fe2-BSA complex calculated from fluorescence data shows that BSA has a low binding affinity for Fe2 than Fe1. DSC data reveal that the thermal stability process of BSA in the Fe2-BSA complex is semi-reversible. This demonstrates that the ionic liquid modified magnetic nanoparticles (Fe2) enhance the thermostability of BSA in the range of 20-40°C, and protein attached Fe2 has higher thermal stability than free BSA. Moreover, the in vitro assay results show that Fe2 shows low cytotoxicity to HepG-2 cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2013.10.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!