As documented in the recent OECD report 'the adverse outcome pathway for skin sensitisation initiated by covalent binding to proteins' (OECD, 2012), the chemical and biological events driving the induction of human skin sensitisation have been investigated for many years and are now well understood. Several non-animal test methods have been developed to predict sensitiser potential by measuring the impact of chemical sensitisers on these key events (Adler et al., 2011; Maxwell et al., 2011); however our ability to use these non-animal datasets for risk assessment decision-making (i.e. to establish a safe level of human exposure for a sensitising chemical) remains limited and a more mechanistic approach to data integration is required to address this challenge. Informed by our previous efforts to model the induction of skin sensitisation (Maxwell and MacKay, 2008) we are now developing two mathematical models ('total haptenated protein' model and 'CD8(+) T cell response' model) that will be linked to provide predictions of the human CD8(+) T cell response for a defined skin exposure to a sensitising chemical. Mathematical model development is underpinned by focussed clinical or human-relevant research activities designed to inform/challenge model predictions whilst also increasing our fundamental understanding of human skin sensitisation. With this approach, we aim to quantify the relationship between the dose of sensitiser applied to the skin and the extent of the hapten-specific T cell response that would result. Furthermore, by benchmarking our mathematical model predictions against clinical datasets (e.g. human diagnostic patch test data), instead of animal test data, we propose that this approach could represent a new paradigm for mechanistic toxicology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tiv.2013.10.013 | DOI Listing |
J Dermatol
January 2025
Henry Ford Health Department of Dermatology, Detroit, Michigan, USA.
Itch is a prominent symptom in many cutaneous disorders, including atopic dermatitis (AD), prurigo nodularis, and psoriasis. Itch is also a common but overlooked concern in patients with hidradenitis suppurativa (HS). Currently, the mechanisms underlying itch in HS remain unclear.
View Article and Find Full Text PDFCurr Res Toxicol
December 2024
National Institute of Environmental Health Sciences, Division of Translational Toxicology, National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, P.O. Box 12233, Research Triangle Park, NC 27709, USA.
Mechanistically based non-animal methods for assessing skin sensitization hazard have been developed, but are not considered sufficient, individually, to conclusively define the skin sensitization potential or potency of a chemical. This resulted in the development of defined approaches (DAs), as documented in OECD TG 497, for combining information sources in a prescriptive manner to provide a determination of risk or potency. However, there are currently no DAs within OECD TG 497 that can derive a point of departure (POD) for risk assessment.
View Article and Find Full Text PDFCrit Rev Toxicol
January 2025
Syngenta, Bracknell, United Kingdom.
While progress has been made in recent years, there are still no suitable and accepted , or models that can be used to accurately predict whether a chemical substance has the intrinsic property to cause immune-mediated chemical respiratory allergy, typically manifested as allergic asthma or allergic rhinitis which represents a severe health hazard. Regulatory authorities have relied primarily on clinical evidence (case reports, clinical databases, worker exposure studies) to classify substances as respiratory sensitizers, but this evidence can lack a proven immunological mechanism which is necessary to identify substances which can cause life-long sensitization and clinically relevant allergic symptoms in the respiratory tract in an exposed population (such respiratory allergens may be considered as "true" sensitizers, in analogy to the definition of skin sensitization, and in contrast to respiratory irritants). In light of this, the European Center for Ecotoxicology and Toxicology of Chemicals convened a Task Force to evaluate the types of clinical methods and data sources and the implications of relying on such data for regulatory decision making from a scientific perspective.
View Article and Find Full Text PDFToxicol Ind Health
January 2025
Cincinnati, OH, USA.
(E)-1,1,1,2,2,5,5,6,6,6-Decafluoro-3-hexene (HFO-153-10mczz-E) (CASRN 1256353-26-0) is a volatile liquid proposed for use as a new low global-warming potential dielectric fluid in cooling applications. Workplace exposures are expected to be by inhalation exposure. The substance has low acute inhalation toxicity as indicated by a 4-h inhalation LC value of approximately 8000 ppm.
View Article and Find Full Text PDFMediators Inflamm
January 2025
Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China.
Numerous studies have reported on the types of aeroallergen sensitization in various pediatric allergic diseases, but limited data compared the types of aeroallergen sensitization across different pediatric allergic diseases. The aim of this study is to explore the nature and significance of aeroallergen sensitization in diverse pediatric allergic conditions. A comparative analysis was carried out on aeroallergen sensitization in children suffering from allergic diseases who visited the Otolaryngology, Respiratory, and Dermatology Departments between January 2019 and December 2023.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!