Multifractal analysis of neutral community spatial structure.

J Theor Biol

Department of Ecology, Faculty of Biology, Nizhny Novgorod State University, Prospekt Gagarina 23, Nizhny Novgorod 603950, Russia.

Published: February 2014

The spatial structure of neutral communities has nontrivial properties, which are described traditionally by the Species-area relationship (SAR) and the Species Abundance Distribution, (SAD). Fractal analysis is an alternative way to describe community structure, the final product of which - a multifractal spectrum - combines information both on the scaling parameters of species richness (similar to SAR), and about species' relative abundances (similar to SAD). We conducted a multifractal analysis of community spatial structure in a neutral lattice-based model. In a realistic range of dispersal distances, moments of the species abundance distribution form a family of curves of the same shape, which are reduced to a single universal curve through a scaling collapse procedure. Trivial scaling is observed on small and large scales, which reflects homogeneity of species distribution at small scales and a limiting log-series distribution at large scales. Multifractal spectra for different speciation rates and dispersal kernels are obtained for the intermediate region of scaling. Analysis of spectra reveals that the key model parameters determine not only the species richness and its scaling, but also of species dominance and rarity. We discovered a phenomenon of negative dimensions in the multifractal spectrum. Negative dimensions have no direct interpretation from a purely physical point of view, but have biological meaning because they reflect the negative relationship between the number of singletons and the area.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtbi.2013.10.011DOI Listing

Publication Analysis

Top Keywords

spatial structure
12
multifractal analysis
8
community spatial
8
structure neutral
8
species abundance
8
abundance distribution
8
multifractal spectrum
8
species richness
8
large scales
8
negative dimensions
8

Similar Publications

Single-cell decisions made in complex environments underlie many bacterial phenomena. Image-based transcriptomics approaches offer an avenue to study such behaviors, yet these approaches have been hindered by the massive density of bacterial messenger RNA. To overcome this challenge, we combined 1000-fold volumetric expansion with multiplexed error-robust fluorescence in situ hybridization (MERFISH) to create bacterial-MERFISH.

View Article and Find Full Text PDF

Expert navigators deploy rational complexity-based decision precaching for large-scale real-world planning.

Proc Natl Acad Sci U S A

January 2025

Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, United Kingdom.

Efficient planning is a distinctive hallmark of intelligence in humans, who routinely make rapid inferences over complex world contexts. However, studies investigating how humans accomplish this tend to focus on naive participants engaged in simplistic tasks with small state spaces, which do not reflect the intricacy, ecological validity, and human specialization in real-world planning. In this study, we examine the street-by-street route planning of London taxi drivers navigating across more than 26,000 streets in London (United Kingdom).

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease characterized by repetitive alveolar injuries with excessive deposition of extracellular matrix (ECM) proteins. A crucial need in understanding IPF pathogenesis is identifying cell types associated with histopathological regions, particularly local fibrosis centers known as fibroblast foci. To address this, we integrated published spatial transcriptomics and single-cell RNA sequencing (scRNA-seq) transcriptomics and adopted the Query method and the Overlap method to determine cell type enrichments in histopathological regions.

View Article and Find Full Text PDF

This study involved 72 volunteers divided into two groups according to the apnea-hypopnea index (AHI): AHI>15 episodes per hour (ep/h) (main group, n=39, including 28 men, median AHI 44.15, median age 47), 0≤AHI≤15ep/h (control group, n=33, including 12 men, median AHI 2, median age 28). Each participant underwent polysomnography with a recording of 19 EEG channels.

View Article and Find Full Text PDF

Unveiling a Tunable Moiré Bandgap in Bilayer Graphene/hBN Device by Angle-Resolved Photoemission Spectroscopy.

Adv Sci (Weinh)

January 2025

School of Physical Science and Technology, ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai, 201210, P. R. China.

Over the years, great efforts have been devoted in introducing a sizable and tunable band gap in graphene for its potential application in next-generation electronic devices. The primary challenge in modulating this gap has been the absence of a direct method for observing changes of the band gap in momentum space. In this study, advanced spatial- and angle-resolved photoemission spectroscopy technique is employed to directly visualize the gap formation in bilayer graphene, modulated by both displacement fields and moiré potentials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!