Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Extracting significant features from high-dimension and small sample size biological data is a challenging problem. Recently, Michał Draminski proposed the Monte Carlo feature selection (MC) algorithm, which was able to search over large feature spaces and achieved better classification accuracies. However in MC the information of feature rank variations is not utilized and the ranks of features are not dynamically updated. Here, we propose a novel feature selection algorithm which integrates the ideas of the professional tennis players ranking, such as seed players and dynamic ranking, into Monte Carlo simulation. Seed players make the feature selection game more competitive and selective. The strategy of dynamic ranking ensures that it is always the current best players to take part in each competition. The proposed algorithm is tested on 8 biological datasets. Results demonstrate that the proposed method is computationally efficient, stable and has favorable performance in classification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2013.10.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!