Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: The goal of this work was to set out a methodology for measuring and reporting small field relative output and to assess the application of published correction factors across a population of linear accelerators.
Methods And Materials: Measurements were made at 6 MV on five Varian iX accelerators using two PTW T60017 unshielded diodes. Relative output readings and profile measurements were made for nominal square field sizes of side 0.5 to 1.0 cm. The actual in-plane (A) and cross-plane (B) field widths were taken to be the FWHM at the 50% isodose level. An effective field size, defined as √FS eff=A · B, was calculated and is presented as a field size metric. FSeff was used to linearly interpolate between published Monte Carlo (MC) calculated [Formula in text] values to correct for the diode over-response in small fields.
Results: The relative output data reported as a function of the nominal field size were different across the accelerator population by up to nearly 10%. However, using the effective field size for reporting showed that the actual output ratios were consistent across the accelerator population to within the experimental uncertainty of ± 1.0%. Correcting the measured relative output using [Formula in text] at both the nominal and effective field sizes produce output factors that were not identical but differ by much less than the reported experimental and/or MC statistical uncertainties.
Conclusions: In general, the proposed methodology removes much of the ambiguity in reporting and interpreting small field dosimetric quantities and facilitates a clear dosimetric comparison across a population of linacs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.radonc.2013.10.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!