A 4D-optimization concept for scanned ion beam therapy.

Radiother Oncol

GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany. Electronic address:

Published: December 2013

Background And Purpose: Scanned carbon beam therapy offers advantageous dose distributions and an increased biological effect. Treating moving targets is complex due to sensitivity to range changes and interplay. We propose a 4D treatment planning concept that considers motion during particle number optimization.

Material And Methods: The target was subdivided into sectors, one for each motion phase of a 4D-CT. Each sector was non-rigidly transformed to its motion phase and there targeted by a dedicated raster field (RST). Therefore, the resulting 4D-RST compensated target motion and range changes. A 4D treatment control system (TCS) was needed for synchronized delivery to the measured patient motion. 4D-optimized plans were simulated for 9 NSCLC lung cancer patients and compared to static irradiation at end-exhale. A prototype TCS was implemented and successfully tested in a film experiment.

Results: The 4D-optimized treatment plan resulted in only slightly lower dose coverage of the target compared to static optimization, with V 95% of 97.9% (median, range 96.5-99.4%) vs. 99.3% (98.5-99.8%), with negligible overdose. The conformity number was comparable at 88.2% (85.1-92.5%) vs. 85.2% (79.9-91.2%) for 4D and static, respectively.

Conclusion: We implemented and tested a 4D treatment plan optimization method resulting in highly conformal dose delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.radonc.2013.09.018DOI Listing

Publication Analysis

Top Keywords

beam therapy
8
range changes
8
motion phase
8
compared static
8
implemented tested
8
treatment plan
8
motion
5
4d-optimization concept
4
concept scanned
4
scanned ion
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!