Dosage compensation in Drosophila is mediated by the MSL complex, which increases male X-linked gene expression approximately 2-fold. The MSL complex preferentially binds the bodies of active genes on the male X, depositing H4K16ac with a 3' bias. Two models have been proposed for the influence of the MSL complex on transcription: one based on promoter recruitment of RNA polymerase II (Pol II), and a second featuring enhanced transcriptional elongation. Here, we utilize nascent RNA sequencing to document dosage compensation during transcriptional elongation. We also compare X and autosomes from published data on paused and elongating polymerase in order to assess the role of Pol II recruitment. Our results support a model for differentially regulated elongation, starting with release from 5' pausing and increasing through X-linked gene bodies. Our results highlight facilitated transcriptional elongation as a key mechanism for the coordinated regulation of a diverse set of genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3852897PMC
http://dx.doi.org/10.1016/j.celrep.2013.09.037DOI Listing

Publication Analysis

Top Keywords

dosage compensation
12
msl complex
12
transcriptional elongation
12
compensation drosophila
8
x-linked gene
8
"jump start
4
start gain"
4
gain" model
4
model dosage
4
drosophila based
4

Similar Publications

Background: Women with endometriosis are more likely to have migraine. The mechanisms underlying this co-morbidity are unknown. Prolactin, a neurohormone secreted and released into circulation from the anterior pituitary, can sensitize sensory neurons from female, but not male, rodents, monkeys and human donors.

View Article and Find Full Text PDF

Ocrelizumab dose selection for treatment of pediatric relapsing-remitting multiple sclerosis: results of the OPERETTA I study.

J Neurol

January 2025

Division of Child Neurology, Children's Hospital of Philadelphia, Departments of Neurology and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Background: The presented study identified the appropriate ocrelizumab dosing regimen for patients with pediatric-onset multiple sclerosis (POMS).

Methods: Patients with POMS aged 10-17 years were enrolled into cohort 1 (body weight [BW] < 40 kg, ocrelizumab 300 mg) and cohort 2 (BW ≥ 40 kg, ocrelizumab 600 mg) during a 24-week dose-exploration period (DEP), followed by an optional ocrelizumab (given every 24 weeks) extension period.

Primary Endpoints: pharmacokinetics, pharmacodynamics (CD19 B-cell count); secondary endpoint: safety; exploratory endpoints: MRI activity, protocol-defined relapses, Expanded Disability Status Scale (EDSS) score change.

View Article and Find Full Text PDF

Background: The COVID-19 pandemic has had profound psychophysiological and socioeconomic effects worldwide. COVID-19 anxiety syndrome (CAS) is a specific cluster of maladaptive coping strategies, including perseveration and avoidance behaviours, in response to the perceived threat and fear of COVID-19. CAS is distinct from general COVID-19 anxiety.

View Article and Find Full Text PDF

Background And Objectives: Safety and efficacy of IV onasemnogene abeparvovec has been demonstrated for patients with spinal muscular atrophy (SMA) weighing <8.5 kg. SMART was the first clinical trial to evaluate onasemnogene abeparvovec for participants weighing 8.

View Article and Find Full Text PDF

Single-cell RNA-seq identifies protracted mouse germline X chromosome reactivation dynamics directed by a PRC2-dependent mechanism.

Dev Cell

January 2025

King's College London, Centre for Gene Therapy and Regenerative Medicine, School of Basic & Medical Biosciences, Faculty of Life Sciences and Medicine, London, UK; King's College London, Guy's Hospital Assisted Conception Unit, Department of Women and Children's Health, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, London, UK. Electronic address:

Female primordial germ cells (PGCs) undergo X chromosome reactivation (XCR) during genome-wide reprogramming. XCR kinetics and dynamics are poorly understood at a molecular level. Here, we apply single-cell RNA sequencing and chromatin profiling on germ cells from F mouse embryos, performing a precise appraisal of XCR spanning from migratory-stage PGCs to gonadal germ cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!