Lipid-rich matrices are often sinks for lipophilic contaminants, such as pesticides, polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs). Typically methods for contaminant extraction and cleanup for lipid-rich matrices require multiple cleanup steps; however, a selective pressurized liquid extraction (SPLE) technique requiring no additional cleanup has been developed for the simultaneous extraction and cleanup of whale earwax (cerumen; a lipid-rich matrix). Whale earwax accumulates in select whale species over their lifetime to form wax earplugs. Typically used as an aging technique in cetaceans, layers or laminae that comprise the earplug are thought to be associated with annual or semiannual migration and feeding patterns. Whale earplugs (earwax) represent a unique matrix capable of recording and archiving whales' lifetime contaminant profiles. This study reports the first analytical method developed for identifying and quantifying lipophilic persistent organic pollutants (POPs) in a whale earplug including organochlorine pesticides, polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs). The analytical method was developed using SPLE to extract contaminants from ∼0.25 to 0.5g aliquots of each lamina of sectioned earplug. The SPLE was optimized for cleanup adsorbents (basic alumina, silica gel, and Florisil(®)), adsorbent to sample ratio, and adsorbent order. In the optimized SPLE method, the earwax homogenate was placed within the extraction cell on top of basic alumina (5g), silica gel (15g), and Florisil(®) (10g) and the target analytes were extracted from the homogenate using 1:1 (v/v) dichloromethane:hexane. POPs were analyzed using gas chromatography-mass spectrometry with electron capture negative ionization and electron impact ionization. The average percent recoveries for the POPs were 91% (±6% relative standard deviation), while limits of detection and quantification ranged from 0.00057 to 0.96ngg(-1) and 0.0017 to 2.9ngg(-1), respectively. Pesticides, PCBs, and PBDEs, were measured in a single blue whale (Balaenoptera musculus) cerumen lamina at concentrations ranging from 0.11 to 150ng g(-1).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2013.10.023DOI Listing

Publication Analysis

Top Keywords

pesticides polychlorinated
12
polychlorinated biphenyls
12
polybrominated diphenyl
12
diphenyl ethers
12
lipid-rich matrices
12
selective pressurized
8
pressurized liquid
8
liquid extraction
8
whale earplug
8
biphenyls pcbs
8

Similar Publications

The critically endangered Brazilian guitarfish faces significant threats from environmental contamination. Assessing the impacts of such stressor is paramount from a conservational perspective. This study investigated the concentrations, distribution and accumulation patterns of organic contaminants in pregnant Brazilian guitarfish Pseudobatos horkelii.

View Article and Find Full Text PDF

Solid-phase microextraction (SPME) is a fast and simple sample preparation technique that enables the enrichment of analytes, and it is used in combination with other detection techniques to provide accurate and sensitive analytical methods. SPME is widely used in environmental monitoring, food safety, life analysis, biomedicine, and other applications. The extractive coating is the core of the SPME technique, and the properties of the extractive coating greatly influence extraction selectivity and efficiency, as well as the enrichment effect.

View Article and Find Full Text PDF

Distribution and bioconcentration of semivolatile organic compounds (SVOCs) in soils and vascular plant Colobanthus quitensis from Sub-Antarctic and Antarctic regions.

Sci Total Environ

February 2025

Centro de Genómica, Ecología y Medio Ambiente (GEMA), Universidad Mayor, Campus Huechuraba, Santiago, Chile; Institute of Environment, Florida International University, University Park, Miami, FL 33199, USA; Data Observatory Foundation, Santiago, Chile. Electronic address:

Semi-volatile organic compounds (SVOCs) are widely distributed across the globe, including polar regions. This study investigates the distribution and bioconcentration of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) in soils and Colobanthus quitensis, while also estimating potential emission sources. Results indicated high concentrations of PAHs in soils and plants from the Sub-Antarctic region, while OCPs and PCBs were more prevalent in the Antarctic region, with higher contaminant concentrations found in soils than in plant tissues.

View Article and Find Full Text PDF

Environmental contaminants assessment for frequently harvested migratory waterfowl in the Northeast Atlantic flyway.

Sci Total Environ

February 2025

Wildlife Health Lab, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, 240 Farrier Rd, Ithaca, NY 14853, USA. Electronic address:

Waterfowl serve as indicators of ecosystem health and represent a pathway of contaminant exposure for hunters who consume them. In the northeast Atlantic Flyway, data on baseline contaminant loads in waterfowl are lacking. We assessed five species of commonly harvested (and consumed) waterfowl for mercury, polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans, polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and per- and polyfluoroalkyl substances (PFAS).

View Article and Find Full Text PDF

Temporal development of chlorinated hydrocarbons in the Baltic Sea sediments: Characterization of the pollution maximum.

Sci Total Environ

January 2025

Leibniz Institute for Baltic Sea (IOW), Marine Chemistry Department, Seestraße 15, 18119 Rostock, Germany; IOW, Seestraße 15, 18119 Rostock, Germany. Electronic address:

The Baltic Sea, a semi-enclosed marginal sea with a catchment area four times its size, acts as a sink and continues to show detectable levels of persistent organic pollutants (POPs) in its sediments. This is attributed to the synthesis and industrial use of commercial polychlorinated biphenyls (PCB) products, as well as the widespread use and discharge of certain chlorinated pesticides into the natural environment during the last century. Our study investigates chlorinated hydrocarbon pollutants, the polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT) and its metabolites as well as hexachlorobenzene (HCB) in sediments based on several short sediment cores from different basins covering almost the entire Baltic Sea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!