In this study, rare earth element (REE) binding constants and site concentration on the Gram+ bacteria surfaces were quantified using a multi-site Langmuir isotherm model, along with a linear programming regression method (LPM), applied to fit experimental REE sorption data. This approach found one discrete REE binding site on the Gram+ Bacillus subtilis surface for the pH range of 2.5-4.5. Average log10 REE binding constants for a site j on these bacteria ranged from 1.08±0.04 to 1.40±0.04 for the light REE (LREE: La to Eu), and from 1.36±0.03 to 2.18±0.14 for the heavy REE (HREE: Gd to Lu) at the highest biomass concentration of 1.3 g/L of B. subtilis bacteria. Similar values were obtained for bacteria concentrations of 0.39 and 0.67 g/L indicating the independence of REE sorption constants on biomass concentration. Within the experimental pH range in this study, B. subtilis was shown to have a lower affinity for LREE (e.g. La, Ce, Pr, Nd) and a higher affinity for HREE (e.g. Tm, Yb, Lu) suggesting an enrichment of HREE on the surface of Gram+ bacteria. Total surface binding site concentrations of 6.73±0.06 to 5.67±0.06 and 5.53±0.07 to 4.54±0.03 mol/g of bacteria were observed for LREE and HREE respectively, with the exception of Y, which showed a total site concentration of 9.53±0.03, and a log K(REE,j) of 1.46±0.02 for a biomass content of 1.3 g/L. The difference in these values (e.g. a lower affinity and increased binding site concentration for LREE, and the contrary for the HREE) suggests a distinction between the LREE and HREE binding modes to the Gram+ bacteria reactive surface at low pH. This further implies that HREE may bind more than one monoprotic reactive group on the cell surface. A multisite Langmuir isotherm approach along with the LPM regression method, not requiring prior knowledge of the number or concentration of cell surface REE complexation sites, were able to distinguish between the sorption constant and binding site concentration patterns of LREE and HREE on the Gram+ B. subtilis surface. This approach quantified the enrichment of Tm, Yb and Lu on the bacteria surface and it has therefore proven to be a useful tool for the study of natural reactive sorbent materials controlling REE partitioning in the natural environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2013.09.037 | DOI Listing |
Sci Rep
January 2025
Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
In this study, new cinnamic acid linked to triazole acetamide derivatives was synthesized and evaluated for anti-Alzheimer and anti-melanogenesis activities. The structural elucidation of all analogs was performed using different analytical techniques, including H-NMR, C-NMR, mass spectrometry, and IR spectroscopy. The synthesized compounds were assessed in vitro for their inhibitory activities against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and tyrosinase enzymes.
View Article and Find Full Text PDFChemosphere
January 2025
Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, Delhi, India, 110016. Electronic address:
The establishment of site-specific target limits (SSTLs) for old municipal solid waste (MSW) dumpsites is essential for defining remediation goals in a scientifically rigorous manner. However, a standardized framework for achieving this is currently lacking. This study proposes a comprehensive framework that integrates high-resolution site characterization (HRSC) tools, targeted sampling, and contaminant transport modeling to derive SSTLs.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Chemistry, College of Science and Engineering, Western Washington University, 516 High Street, Bellingham, WA, 98229, USA.
Fluorescent lifetimes of dissolved organic matter (DOM) and associated physicochemical parameters were measured over 14 months in an estuary in Southern California, USA. Measurements were made on 77 samples from sites near the inlet, mid-estuary, and outlet to maximize the range of physicochemical variables. Time-resolved fluorescence data were well fit to a triexponential model with an intermediate lifetime component (τ: 1 to 5 ns), a long lifetime component (τ: 2 to 15 ns), and a short lifetime component (τ: < 1 ns).
View Article and Find Full Text PDFACS Chem Biol
January 2025
Institut für Pharmazeutische Chemie, Goethe-University Frankfurt, Biozentrum, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany.
Small molecule degraders such as PROteolysis TArgeting Chimeras (PROTACs) and molecular glues are new modalities for drug development and important tools for target validation. When appropriately optimized, both modalities lead to proteasomal degradation of the protein of interest (POI). Due to the complexity of the induced multistep degradation process, controls for degrader evaluation are critical and commonly used in the literature.
View Article and Find Full Text PDFBioorg Chem
December 2024
Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China. Electronic address:
Inhibition of human concentrative nucleoside transporter 2 (CNT2) could suppress increases in serum urate levels derived from dietary purines. However, the structural basis for substrate recognition of CNT2 is still unknown and only a few inhibitors have been reported. In this study, a homology model of CNT2 was constructed and residues T315, E316, N426, N491, E492, F536 and N538 were identified as binding sites for adenosine through site-directed mutagenesis and a H-adenosine uptake assay.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!