Typical Pickering emulsions accumulate particles to form a robust colloidal layer at an immiscible liquid-liquid interface. However, if the particles are smaller than tens of nanometers, they have a tendency toward coming off from the interface, thereby destabilizing emulsion drops. To solve this problem, a technique that can make the adsorbed nanoparticles stay at the interface should be developed. This study introduces a practical method that allows us to obtain a mechanically stable Pickering emulsions; n-decane was emulsified to form an oil-in-water emulsion of which interface was stabilized with a complex colloidal layer consisting of 12 nm-sized silica nanoparticles, a poly(vinyl alcohol) binder, and an alkyl-chained silane coupling agent. We have found that in the conditions of high salinity, the emulsion drops attract each other and form an emulsion gel phase. However, even in such harsh conditions, the complex silica layer maintains its original structure at the interface, thus stabilizing the emulsion drop against coalescence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2013.09.015 | DOI Listing |
Int J Biol Macromol
January 2025
School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China.
This study developed the multifunctional cellulose nanofibers (CNFs) as emulsifier for preparation of antibacterial, ultrastable and non-toxic emulsion. To achieve these properties, CNFs were oxidated using sodium periodate to introduce aldehyde groups, which served as Schiff-base reaction sites for amino groups of polyhexamethylene guanidine (PHMG), yielding PHMG-grafted CNFs (PCNFs). The modified CNFs retained good emulsification ability while acquiring antibacterial properties.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea.
Liquid metals (LMs), i.e., metals and alloys that exist in a liquid state at room temperature, have recently attracted considerable attention owing to their electronic and rheological properties useful in various cutting-edge technologies.
View Article and Find Full Text PDFACS Omega
January 2025
Ugelstad Laboratory, Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.
Pickering emulsions (PEs) have demonstrated significant potential in various fields, including catalysis, biomedical applications, and food science, with notable advancements in wastewater treatment through photocatalysis. This study explores the development and application of TiO-poly(-isopropylacrylamide) (pNIPAm) composite gels as a novel framework for photocatalytic wastewater remediation. The research focuses on overcoming challenges associated with conventional nanoparticle-based photocatalytic systems, such as agglomeration and inefficient recovery of particles.
View Article and Find Full Text PDFJ Vasc Interv Radiol
January 2025
Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine. 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Purpose: This research aimed to develop and assess a Lipiodol Pickering emulsion containing anti-Programmed cell Death Ligand 1 (PD-L1) antibodies through in vitro experiments.
Materials And Methods: The emulsion was created by combining Lipiodol with poly (lactic-co-glycolic acid) (PLGA) nanoparticles and anti-PD-L1 antibodies. Confocal laser microscopy was used to evaluate the encapsulation of the antibodies within the Pickering emulsion.
Food Chem
January 2025
Department of Nutritional Sciences, University of Connecticut, Storrs, CT, 06269, United States. Electronic address:
This study evaluated the properties of lentil protein, pea protein, quinoa protein, and soy protein as natural nanoparticle stabilizers and their interactions with pectin and chitin nanofiber in preparing high internal phase Pickering emulsions (HIPPEs). The globular plant proteins interact with polysaccharides through hydrogen bonding and electrostatic interactions, transforming the structure into complex morphologies, including fibrous and elliptical shapes. These complex nanoparticles exhibited enhanced thermal decomposition stability, and the HIPPEs constructed by them demonstrated significantly improved apparent viscosity and elastic modulus, with a yield stress of 931.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!