Background/purpose: Noonan syndrome (NS) is inherited as an autosomal dominant disorder with dysmorphic facies, short stature, and cardiac defects, which can be caused by missense mutations in the protein tyrosine phosphatase nonreceptor type 11 (PTPN11) gene, which encodes src homology region 2 domain containing tyrosine phosphatase-2 (SHP-2), a protein tyrosine phosphatase that acts in signal transduction downstream to growth factors and cytokines. The current study aimed to study the molecular characterization of the PTPN11 gene among Egyptian patients with Noonan syndrome.

Methods: Eleven exons of the PTPN11 gene were amplified and screened by single stranded conformational polymorphism (SSCP). DNA samples showing band shift in SSCP were subjected to sequencing.

Results: Mutational analysis of the PTPN11 gene revealed T→C transition at position 854 in exon 8, predicting Phe285Ser substitution within PTP domain of SHP-2 protein, in one NS patient and -21C→T polymorphism in intron 7 in four other cases.

Conclusion: Knowing that NS is phenotypically heterogeneous, molecular characterization of the PTPN11 gene should serve to establish NS diagnosis in patients with atypical features, although lack of a mutation does not exclude the possibility of NS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jfma.2012.06.002DOI Listing

Publication Analysis

Top Keywords

ptpn11 gene
24
mutational analysis
8
analysis ptpn11
8
gene egyptian
8
egyptian patients
8
patients noonan
8
noonan syndrome
8
protein tyrosine
8
tyrosine phosphatase
8
shp-2 protein
8

Similar Publications

Objective: To explore the influence of SALL4 in cardiac fibroblasts on the progression of myocardial infarction.

Methods: Analysis of genes specifically expressed in myocardial infarction by bioinformatics methods; The impact of SALL4 on myocardial infarction was assessed using mouse ultrasound experiments and Masson staining; The effect of SALL4 on the expression levels of collagen-I and collagen-III in myocardial tissue was examined by immunohistochemical staining; The migration ability of cardiac fibroblasts was evaluated using a Transwell assay; The proliferative ability of cardiac fibroblasts was tested using a CCK-8 assay; The relative fluorescence intensity of α-SMA and CTGF in cardiac fibroblasts were checked through immunofluorescence staining experiment; The expression of SALL4, DOT1L, H3K79me2, P53, SHP2, YAP, nucleus-YAP, collagen-I, α-SMA, CTGF, and PAI-1 in myocardial tissues or cardiac fibroblasts was detected using western blot analysis.

Results: SALL4-specific high expression in myocardial infarction; SALL4 intensified the alterations in the heart structure of mice with myocardial infarction and worsened the fibrosis of myocardial infarction; SALL4 also promoted the expression of SALL4, DOT1L, H3K79me2, P53, SHP2, YAP, nucleus-YAP, collagen-I, collagen-III, α-SMA, CTGF, and PAI-1 in myocardial infarction tissues and cardiac fibroblasts; Subsequently, SALL4 could enhance the immunofluorescence intensity of α-SMA and CTGF; Moreover, SALL4 could promote the proliferation and migration of cardiac fibroblasts.

View Article and Find Full Text PDF

Unlabelled: The RASopathies are a group of disorders resulting from a germline variant in the genes encoding the Ras/mitogen-activated protein kinase pathway. These disorders include Noonan syndrome (NS), cardiofaciocutaneous syndrome (CFC), Costello syndrome (CS), Legius syndrome (LS), and neurofibromatosis type 1 (NF1), and have overlapping clinical features due to RAS/MAPK dysfunction. In this study, we aimed to describe the clinical and molecular features of patients exhibiting phenotypic manifestations consistent with RASopathies.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and functional impairments. Despite extensive research, its pathogenesis remains incompletely understood, and effective treatments are limited. This study explored the therapeutic potential of agarwood in AD by integrating network pharmacology, protein-protein interaction (PPI) network analysis, and single-cell expression analysis.

View Article and Find Full Text PDF

Intravascular large B-cell lymphoma arising in the pituitary gland: A case report.

Medicine (Baltimore)

December 2024

Departments of Pathology, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, and Research Institute for Endocrine Sciences, Jeonju, Jeonbuk, Republic of Korea.

Rationale: Primary pituitary lymphoma is defined as a lymphoma that develops only in the pituitary gland without involvement of other areas.

Patient Concerns: We present the case of a 61-year-old female patient who underwent an endonasal transsphenoidal approach for the preoperative diagnosis of a pituitary macroadenoma based on radiological findings.

Diagnoses: Microscopically, the capillaries were distended by tumor cells.

View Article and Find Full Text PDF

Three Novel Pathogenic Variants in Unrelated Vietnamese Patients with Cardiomyopathy.

Diagnostics (Basel)

November 2024

Institute of Genome Research, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam.

: Cardiomyopathy, including dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM), is a major cause of heart failure (HF) and a leading indication for heart transplantation. Of these patients, 20-50% have a genetic cause, so understanding the genetic basis of cardiomyopathy will provide knowledge about the pathogenesis of the disease for diagnosis, treatment, prevention, and genetic counseling for families. : This study collected nine patients from different Vietnamese families for genetic analysis at The Cardiovascular Center, E Hospital, Hanoi, Vietnam.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!