Instrument performance study on the short and long pulse options of the second Spallation Neutron Source target station.

Rev Sci Instrum

Instrument and Source Division, Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.

Published: October 2013

The Spallation Neutron Source (SNS) facility at the Oak Ridge National Laboratory is designed with an upgrade option for a future low repetition rate, long wavelength second target station. This second target station is intended to complement the scientific capabilities of the 1.4 MW, 60 Hz high power first target station. Two upgrade possibilities have been considered, the short and the long pulse options. In the short pulse mode, proton extraction occurs after the pulse compression in the accumulator ring. The proton pulse structure is thus the same as that for the first target station with a pulse width of ~0.7 μs. In the long pulse mode, protons are extracted as they are produced by the linac, with no compression in the accumulator ring. The time width of the uncompressed proton pulse is ~1 ms. This difference in proton pulse structure means that neutron pulses will also be different. Neutron scattering instruments thus have to be designed and optimized very differently for these two source options which will directly impact the overall scientific capabilities of the SNS facility. In order to assess the merits of the short and long pulse target stations, we investigated a representative suit of neutron scattering instruments and evaluated their performance under each option. Our results indicate that the short pulse option will offer significantly better performance for the instruments and is the preferred choice for the SNS facility.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4823778DOI Listing

Publication Analysis

Top Keywords

target station
20
long pulse
16
short long
12
sns facility
12
proton pulse
12
pulse
11
pulse options
8
spallation neutron
8
neutron source
8
second target
8

Similar Publications

Declines in anthropogenic mercury emissions in the Global North and China offset by the Global South.

Nat Commun

January 2025

Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China.

Human activities have emitted substantial mercury into the atmosphere, significantly impacting ecosystems and human health worldwide. Currently, consistent methodologies to evaluate long-term mercury emissions across countries and industries are scant, hindering efforts to prioritize emission controls. Here, we develop a high-spatiotemporal-resolution dataset to comprehensively analyze global anthropogenic mercury emission patterns.

View Article and Find Full Text PDF

Non-targeted analysis (NTA) using high-resolution mass spectrometry without defined chemical targets has the potential to expand and improve chemical monitoring in many fields. Despite rapid advancements within the research community, NTA methods and data remain underutilized by many potential beneficiaries. To better understand barriers toward widespread adoption, the Best Practices for Non-Targeted Analysis (BP4NTA) working group conducted focus group meetings and follow-up surveys with scientists (n = 61) from various sectors (e.

View Article and Find Full Text PDF

Ashwagandha (Withania somnifera), enriched in alkaloids, steroidal lactones and saponins, is a valuable herb in Indian Ayurvedic medicine. During December 2023, Va-1 (Vallabh Ashwagandha-1) plants at ICAR -Central Tobacco Research Institute, Vedasandur, Tamil Nadu (10.53717ºN, 77.

View Article and Find Full Text PDF

Systematic conservation planning (SCP) involves the cost-effective placement and application of management actions to achieve biodiversity conservation objectives. Given the political momentum for greater global nature protection, restoration, and improved management of natural resources articulated in the targets of the Global Biodiversity Framework, assessing the state-of-the-art of SCP is timely. Recent advances in SCP include faster and more exact algorithms and software, inclusion of ecosystem services and multiple facets of biodiversity (e.

View Article and Find Full Text PDF

Heavy Neutral Leptons via Axionlike Particles at Neutrino Facilities.

Phys Rev Lett

December 2024

Northwestern University, Department of Physics and Astronomy, 2145 Sheridan Road, Evanston, Illinois 60208, USA.

Heavy neutral leptons (HNLs) are often among the hypothetical ingredients behind nonzero neutrino masses. If sufficiently light, they can be produced and detected in fixed-target-like experiments. We show that if the HNLs belong to a richer-but rather generic-dark sector, their production mechanism can deviate dramatically from expectations associated with the standard-model weak interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!