Modeling of stored charge in metallized biaxially oriented polypropylene film capacitors based on charging current measurement.

Rev Sci Instrum

State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China.

Published: October 2013

Metallized biaxially oriented polypropylene film (BOPP) capacitors are widely used in pulsed power systems. When the capacitor is used as the energy storage equipment under high electric field, more charges should be provided to maintain the voltage of the capacitor. This should be ascribed to the completion of the slow polarization which may take several hours or even longer. This paper focuses on the stored charge in metallized BOPP film capacitors. The modeling of the stored charge by the equivalent conversion of circuits is conducted to analyse the slow polarization in the BOPP film. The 3-RC network is proposed to represent the time-dependent charge stored in the capacitor. A charging current measurement system is established to investigate the charge storage property of the capacitor. The measurement system can measure the long time charging current with a sampling rate of 300 Hz. The total charge calculated by the charging current indicates that the stored charge in the capacitor under the electric field of 400 V/μm is 13.5% larger than the product of the voltage and the capacitance measured by the AC bridge. The nonlinear effect of the electric field on the slow polarization charge is also demonstrated. And the simulation of charge storage based on the 3-RC network can match well with the trend of the stored charge increasing with the time.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4827092DOI Listing

Publication Analysis

Top Keywords

stored charge
20
charging current
16
electric field
12
slow polarization
12
charge
10
modeling stored
8
charge metallized
8
metallized biaxially
8
biaxially oriented
8
oriented polypropylene
8

Similar Publications

In the past decade, conjugated oligoelectrolytes (COEs) and conjugated polyelectrolytes (CPEs) have emerged at the forefront of active materials in bioanalytical and electrochemical settings due to their unique electronic and ionic properties. These materials possess π-conjugated backbones with ionic functionalities at the ends of their side chains, granting them water solubility and facilitating their processability, exploration, and applications in aqueous environments. In this perspective, the basis for evaluating their figures of merit in selected bioanalytical and electrochemical contexts will be provided and contextualized.

View Article and Find Full Text PDF

We studied mortality and hospital contact in people from Thyborøn-Harboøre, an environmentally contaminated fishing community on the Danish West Coast. The population and a comparison group from other fishing communities on the Danish West Coast were identified from historical data in the Central Population Register. All persons were followed up for death and hospital contacts to March 2023.

View Article and Find Full Text PDF

Pressure-Induced Assembly of Organic Phase-Change Materials Hybridized with Expanded Graphite and Carbon Nanotubes for Direct Solar Thermal Harvesting and Thermoelectric Conversion.

Nanomaterials (Basel)

December 2024

State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China.

Direct harvesting of abundant solar thermal energy within organic phase-change materials (PCMs) has emerged as a promising way to overcome the intermittency of renewable solar energy and pursue high-efficiency heating-related applications. Organic PCMs, however, generally suffer from several common shortcomings including melting-induced leakage, poor solar absorption, and low thermal conductivity. Compounding organic PCMs with single-component carbon materials faces the difficulty in achieving optimized comprehensive performance enhancement.

View Article and Find Full Text PDF

This study focused on the development of cholesterol-free fusogenic liposomes with different surface charge with the aim of improving biofilm penetration. In vitro assessments of the liposomes included physical stability, biocompatibility, fusion with microbial cells, and the ability to penetrate established biofilms. Using dynamic light scattering, cholesterol-free, fusogenic liposomes were found to be < 200 nm in size with small size distribution (PDI < 0.

View Article and Find Full Text PDF

Effect of time and temperature on the stability of HPV and cellular nucleic acid using simulated dry self-samples.

J Virol Methods

December 2024

Scottish HPV Reference Laboratory, NHS Lothian, Royal Infirmary of Edinburgh, Little France, Edinburgh EH16 4SA, United Kingdom; HPV Research Group, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom.

Background: Self-sampling is now a key component within HPV-based cervical screening programmes to engage individuals and enhance participation. As self-sampling is relatively new, information on the influence of pre-analytical parameters such as transit-temperature and time between sampling and testing on HPV test results requires detailed investigation.

Methods: FLOQSwabs® and Evalyn Brushes® were used to assess HPV and cellular stability over a 30-week period (0w,4w,12w,30w) at 4 °C, ambient, and 37 °C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!