Theoretical study of energy deposition in ionization chambers for tritium measurements.

Rev Sci Instrum

Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Sichuan Mianyang 621900, People's Republic of China.

Published: October 2013

Energy deposition in ionization chambers has been theoretically studied for tritium measurements in gaseous form. A one-dimension model is introduced to establish the quantitative relationship between energy deposition rate and many factors, including carrier gas, gas pressure, wall material, chamber size, and gas temperature. Energy deposition rate has been calculated at pressure varying from 5 kPa to 500 kPa based on some approximations. It is found that energy deposition rate varies greatly for different parameters, especially at low gas pressure. For the same chamber, energy deposition rate in argon is much higher than in deuterium, as much as 70.7% higher at 5 kPa. Gold plated chamber gives highest energy deposition rate in the calculations while aluminum chamber results in the lowest. As chamber size gets smaller, β ray emitted by tritium will deposit less energy in the sensitive region of the chamber. For chambers flowing through with the same gas, energy deposition rate in a 10 L chamber is 23.9% higher than in a 0.05 L chamber at 5 kPa. Gas temperature also places slight influence on energy deposition rate, and 373 K will lead to 6.7% lower deposition rate than 233 K at 5 kPa. In addition, experiments have been performed to obtain energy deposition rate in a gold plated chamber, which show good accordance with theoretical calculations.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4825032DOI Listing

Publication Analysis

Top Keywords

energy deposition
40
deposition rate
36
energy
11
deposition
11
rate
9
chamber
9
deposition ionization
8
ionization chambers
8
tritium measurements
8
gas pressure
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!