A novel approach for monochromatizing and focussing the Vacuum-Ultraviolet and soft x-ray radiation from high-order harmonic generation of a femtosecond optical laser with only one optical element is presented. We demonstrate that off-axis reflection zone plates applied as focussing monochromators allow for efficiently optimizing the trade-off between energy resolution and temporal dispersion of the femtosecond pulses. In the current experimental realization, we show how the temporal dispersion can be varied between 2 fs and 16 fs with a correlating variation of the energy resolution E/ΔE between 20 and 90 for an off-axis reflection zone plate optimized for harmonic 13 at 20.41 eV. We also show how the focal spot size varies correspondingly between 80 × 90 μm(2) and 290 × 140 μm(2) as determined with a computational fitting approach based on a 3D Gaussian model. The diffraction efficiency for the tested zone plates amounts to up to 10%. We furthermore evaluate the influence of pointing stability on the performance of the zone plates. Based on our results we propose an optimized realization of a dedicated beam line for femtosecond pulses from high-order harmonic generation with an off-axis reflection zone plate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4822114 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!