A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Classification of mysticete sounds using machine learning techniques. | LitMetric

Classification of mysticete sounds using machine learning techniques.

J Acoust Soc Am

DYNI team, Laboratoire LSIS, UMR CNRS 7296, Université Sud Toulon-Var, Avenue de l'Université, BP20132, 83957 La Garde Cedex, France.

Published: November 2013

Automatic classification of mysticete sounds has long been a challenging task in the bioacoustics field. The unknown statistical properties of the signals as well as the use of different recording apparatus and low signal-to-noise ratio conditions often lead to non-optimal systems. The goal of this paper is to design methods for the automatic classification of mysticete sounds using a restricted Boltzmann machine and a sparse auto-encoder that are widely used in the field of artificial intelligence. Experiments on five species of mysticetes are presented. The different methods are employed on the subset of species whose frequency range overlaps, as well as in all five species' calls. Moreover, results are offered with and without the use of a noise class. Overall, the systems are able to achieve an average classification accuracy of over 69% (with noise) and 80% (without noise) given the different architectures.

Download full-text PDF

Source
http://dx.doi.org/10.1121/1.4821203DOI Listing

Publication Analysis

Top Keywords

classification mysticete
12
mysticete sounds
12
automatic classification
8
classification
4
sounds machine
4
machine learning
4
learning techniques
4
techniques automatic
4
sounds long
4
long challenging
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!