Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Automatic classification of mysticete sounds has long been a challenging task in the bioacoustics field. The unknown statistical properties of the signals as well as the use of different recording apparatus and low signal-to-noise ratio conditions often lead to non-optimal systems. The goal of this paper is to design methods for the automatic classification of mysticete sounds using a restricted Boltzmann machine and a sparse auto-encoder that are widely used in the field of artificial intelligence. Experiments on five species of mysticetes are presented. The different methods are employed on the subset of species whose frequency range overlaps, as well as in all five species' calls. Moreover, results are offered with and without the use of a noise class. Overall, the systems are able to achieve an average classification accuracy of over 69% (with noise) and 80% (without noise) given the different architectures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/1.4821203 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!