Background: Although magnetoencephalography (MEG) studies show superior temporal gyrus (STG) auditory processing abnormalities in schizophrenia at 50 and 100 ms, EEG and corticography studies suggest involvement of additional brain areas (e.g., frontal areas) during this interval. Study goals were to identify 30 to 130 ms auditory encoding processes in schizophrenia (SZ) and healthy controls (HC) and group differences throughout the cortex.
Methods: The standard paired-click task was administered to 19 SZ and 21 HC subjects during MEG recording. Vector-based Spatial-temporal Analysis using L1-minimum-norm (VESTAL) provided 4D maps of activity from 30 to 130 ms. Within-group t-tests compared post-stimulus 50 ms and 100 ms activity to baseline. Between-group t-tests examined 50 and 100 ms group differences.
Results: Bilateral 50 and 100 ms STG activity was observed in both groups. HC had stronger bilateral 50 and 100 ms STG activity than SZ. In addition to the STG group difference, non-STG activity was also observed in both groups. For example, whereas HC had stronger left and right inferior frontal gyrus activity than SZ, SZ had stronger right superior frontal gyrus and left supramarginal gyrus activity than HC.
Conclusions: Less STG activity was observed in SZ than HC, indicating encoding problems in SZ. Yet auditory encoding abnormalities are not specific to STG, as group differences were observed in frontal and SMG areas. Thus, present findings indicate that individuals with SZ show abnormalities in multiple nodes of a concurrently activated auditory network.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3777790 | PMC |
http://dx.doi.org/10.1016/j.nicl.2013.05.002 | DOI Listing |
Background And Hypothesis: We have reported previously a reduction in superior temporal gyrus (STG) activation and in auditory verbal hallucinations (AHs) after real-time fMRI neurofeedback (NFB) in schizophrenia patients with AHs.
Study Design: With this randomized, participant-blinded, sham-controlled trial, we expanded our previous results. Specifically, we examined neurofeedback effects from the STG, an area associated with auditory hallucinations.
J Neurophysiol
February 2025
Biology Department and Volen Center, MS 013, Brandeis University, Waltham, Massachusetts, United States.
Animals must deal with numerous perturbations, oftentimes concurrently. In this study, we examine the effects of two perturbations, high extracellular potassium and elevated temperature, on the resilience of the pyloric rhythm of the crab, . At control temperatures (11°C), high potassium saline (2.
View Article and Find Full Text PDFEcology
January 2025
Department of Ecology, University of Innsbruck, Innsbruck, Austria.
The trait-based partitioning of species plays a critical role in biodiversity-ecosystem function relationships. This niche partitioning drives and depends on community structure, yet this link remains elusive in the context of a metacommunity, where local community assembly is dictated by regional dispersal alongside local environmental conditions. Hence, elucidating the coupling of niche partitioning and community structure needs spatially explicit studies.
View Article and Find Full Text PDFObesity (Silver Spring)
February 2025
Faculty of Behavioral and Social Sciences, Department of Pedagogy and Educational Sciences, University of Groningen, Groningen, the Netherlands.
Objective: We examined BMI development across changes in the built environment during the transition from adolescence to young adulthood and explored the moderating role of genetic risk.
Methods: We used longitudinal data from individuals aged 16 to 25 years in the TRacking Adolescents' Individual Lives Survey (TRAILS) that we linked to built environment data for 2006, 2010, and 2016 from the Geoscience and Health Cohort Consortium (GECCO). We fitted a latent growth model of BMI and examined associations of changes in fast-food restaurant density and walkability with changes in BMI (n = 2735), as well as interactions of changes in fast-food restaurant density and walkability with genetic risk (n = 1676).
Nat Mater
January 2025
Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), Oeiras, Portugal.
Directed collective cell migration is essential for morphogenesis, and chemical, electrical, mechanical and topological features have been shown to guide cell migration in vitro. Here we provide in vivo evidence showing that endogenous electric fields drive the directed collective cell migration of an embryonic stem cell population-the cephalic neural crest of Xenopus laevis. We demonstrate that the voltage-sensitive phosphatase 1 is a key component of the molecular mechanism, enabling neural crest cells to specifically transduce electric fields into a directional cue in vivo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!