Nanoparticles are increasingly used for biomedical purposes. Many different diagnostic and therapeutic applications are envisioned for nanoparticles, but there are often also serious concerns regarding their safety. Given the fact that numerous new nanomaterials are being developed every day, and that not much is known about the long-term toxicological impact of exposure to nanoparticles, there is an urgent need to establish efficient methods for nanotoxicity testing. The zebrafish (Danio rerio) embryo assay has recently emerged as an interesting 'intermediate' method for nanotoxicity screening, enabling (semi-) high-throughput analyses in a system significantly more complex than cultured cells, but at the same time also less 'invasive' and less expensive than large-scale biocompatibility studies in mice or rats. The zebrafish embryo assay is relatively well-established in the environmental sciences, but it has not yet gained wide notice in the nanomedicine field. Using prototypic polymeric drug carriers, gold-based nanodiagnostics and nanotherapeutics, and iron oxide-based nanodiagnostics, we here show that toxicity testing using zebrafish embryos is easy, efficient and informative, and faithfully reflects, yet significantly extends, cell-based toxicity testing. We therefore expect that the zebrafish embryo assay will become a popular future tool for nanotoxicity screening.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3810647 | PMC |
http://dx.doi.org/10.1039/C3TB20528B | DOI Listing |
Hum Reprod
January 2025
Next Fertility GynePro, Bologna, Italy.
In recent years, the transfer of more than one embryo has become less frequent to diminish multiple pregnancies. Even so, there is still a risk of one embryo splitting into two or even three. This report presents the case of a triamniotic monochorionic gestation in a 35-year-old woman, obtained after the transfer of a single day 5 embryo that had been previously hatched with a laser and subsequently transferred in a fresh IVF cycle.
View Article and Find Full Text PDFHum Reprod
January 2025
IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III-Paul Sabatier (UPS), Toulouse, France.
Study Question: Does a human fallopian tube (HFT) organoid model offer a favourable apical environment for human sperm survival and motility?
Summary Answer: After differentiation, the apical compartment of a new HFT organoid model provides a favourable environment for sperm motility, which is better than commercial media.
What Is Known Already: HFTs are the site of major events that are crucial for achieving an ongoing pregnancy, such as gamete survival and competence, fertilization steps, and preimplantation embryo development. In order to better understand the tubal physiology and tubal factors involved in these reproductive functions, and to improve still suboptimal in vitro conditions for gamete preparation and embryo culture during IVF, we sought to develop an HFT organoid model from isolated adult stem cells to allow spermatozoa co-culture in the apical compartment.
Medicine (Baltimore)
January 2025
Dianjiang People's Hospital of Chongqing, Chongqing, China.
This study investigates the impact of twin intrahepatic cholestasis in pregnancy (ICP) in different chorionicity scenarios on pregnancy outcome and risk factors. This retrospective study was designed to investigate the association between ICP and pregnancy outcomes and associated risk factors. Logistic regression analysis was used to verify the correlation between ICP and pregnancy outcome and the associated risk factors with the risk of ICP.
View Article and Find Full Text PDFVet Med Sci
January 2025
Department of Surgery and Obstetrics, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh.
Captive ratites, including the ostrich (Struthio camelus), are susceptible to various gastrointestinal conditions. However, spontaneous cloacal prolapse is a relatively less frequent diagnosis. This report details the clinical management of cloacal prolapse in an ostrich, including a brief literature review.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
Safer chemical alternatives to bisphenol (BP) have been a major pursuit of modern green chemistry and toxicology. Using a chemical similarity-based approach, it is difficult to identify minor structural differences that contribute to the significant changes of toxicity. Here, we used omics and computational toxicology to identify chemical features associated with BP analogue-induced embryonic toxicity, offering valuable insights to inform the design of safer chemical alternatives.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!