The β-nitration reaction carried out on the corrole macrocycle has been shown to be extremely regioselective, although the reduced symmetry of the macrocycle could potentially lead to a huge number of possible regioisomers. We recently reported that the careful use of AgNO/NaNO as a nitrating system enabled the achievement in good yields of mono- and dinitro-derivatives on both corrole free base and its copper complex, proving to be an efficient and cost-effective method. In this work, we present a detailed study of the scope of this method using TtBuCorrH as a model corrole. A further increase of the oxidant pushes the nitration up to the functionalization of three β-pyrrolic positions, although concomitant decomposition of the macrocycle is also observed. The application of the proven nitration method with a five-fold excess of both silver and sodium nitrites with respect to corrole, afforded the 2,3,17-(NO)-TtBuPCorrCu as the main product, in 25% yield, together with traces of another compound identified by X-ray crystallographic analysis as the 3,8,17-(NO)-TtBuPCorrCu isomer. In light of these recent results, we also reinvestigated the characterization of the nitration products obtained from bis-substitution reactions, allowing among others the identification of the copper 3,8-(NO) corrolate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3811046 | PMC |
http://dx.doi.org/10.1142/S1088424613500120 | DOI Listing |
Ultrastruct Pathol
January 2025
Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
There is an important concern about the potential health and environmental risks that may develop due to exposure to copper oxide nanoparticles (CuO-NPs). Selenium is an essential trace element. It supports the expression of a variety of selenoproteins.
View Article and Find Full Text PDFSci Rep
January 2025
Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA.
Triply periodic minimal surface (TPMS) metamaterials show promise for thermal management systems but are challenging to integrate into existing packaging with strict mechanical requirements. Composite TPMS lattices may offer more control over thermal and mechanical properties through material and geometric tuning. Here, we fabricate copper-plated, 3D-printed triply periodic minimal surface primitive lattices and evaluate their suitability for battery thermal management systems.
View Article and Find Full Text PDFSci Rep
January 2025
The Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, Jilin Province, China.
This study aims to investigate the association between serum copper (Cu), selenium (Se), zinc (Zn), Se/Cu and Zn/Cu ratios and the risk of sarcopenia. In this study, which involved 2766 adults aged ≥ 20 years enrolled in the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2016, multivariable logistic regression, restricted cubic spline (RCS) models and mediation analyses were used. After full adjustment, multivariable logistic regression revealed that higher serum copper levels were correlated with an increased risk of sarcopenia.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Statistics, Imam Khomeini International University, Qazvin, Iran.
Determination of hydrogen peroxide (HO) is of great importance in many systems for controlling the quality of products, food safety, and medical diagnostics. In this work, a highly sensitive photoluminescence film sensor was synthesized based on chitosan (CS), polyvinyl alcohol (PVA), and terephthalic acid (TPA), in the presence of copper (II) ions for determination of hydrogen peroxide. TPA was used as a sensitive probe for detection of hydroxyl radicals produced in a photo-Fenton-like process.
View Article and Find Full Text PDFWater Res
January 2025
China Electronics System Engineering No.2 Construction Co., Ltd., Wuxi 214115, PR China.
Copper-containing industrial wastewater, characterized by strong acidity, high ionic strength, and various competing metals, presents significant challenges for Cu(II) recovery. To address these issues, an electric field-enhanced ultrafiltration process was developed, assisted with a functional polyelectrolyte with high selectivity for Cu(II). The polyelectrolyte, termed PPEI, was synthesized by grafting picolyl groups onto polyethyleneimine (PEI), enhancing its affinity for Cu(II).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!