Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Understanding the nature of noncovalent interactions between nonpolar small molecules is not only theoretically interesting but also important for practical purposes. The interaction mechanism of three prototype dimers (H₂)₂, (N₂)₂, and (H₂)(N₂) are investigated by state-of-the-art quantum chemistry calculations and energy decomposition analysis. It is shown that their configuration preferences are essentially controlled by the electrostatic component rather than the dispersion effect though the monomers have zero dipole moment. These configuration preferences can also be fairly well and conveniently interpreted by visually examining the electrostatic potential map.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00894-013-2034-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!