Compound-induced pancreatic injury is a serious liability in preclinical toxicity studies. However, its relevance to humans should be cautiously evaluated because of interspecies variations. To highlight such variations, we evaluated the species- and dose-specific pancreatic responses and progression caused by GI181771X, a novel cholecystokinin 1 receptor agonist investigated by GlaxoSmithKline for the treatment of obesity. Acute (up to 2,000 mg/kg GI181771X, as single dose) and repeat-dose studies in mice and/or rats (0.25-250 mg/kg/day for 7 days to 26 weeks) showed wide-ranging morphological changes in the pancreas that were dose and duration dependent, including necrotizing pancreatitis, acinar cell hypertrophy/atrophy, zymogen degranulation, focal acinar cell hyperplasia, and interstitial inflammation. In contrast to rodents, pancreatic changes were not observed in cynomolgus monkeys given GI181771X (1-500 mg/kg/day with higher systemic exposure than rats) for up to 52 weeks. Similarly, no GI181771X treatment-associated abnormalities in pancreatic structure were noted in a 24-week clinical trial with obese patients (body mass index >30 or >27 kg/m(2)) as assessed by abdominal ultrasound or by magnetic resonance imaging. Mechanisms for interspecies variations in the pancreatic response to CCK among rodents, monkeys, and humans and their relevance to human risk are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0192623313506792 | DOI Listing |
J Anim Ecol
August 2024
School of Biological Sciences, Monash University, Clayton, Victoria, Australia.
In our rapidly changing world, understanding how species respond to shifting conditions is of paramount importance. Pharmaceutical pollutants are widespread in aquatic ecosystems globally, yet their impacts on animal behaviour, life-history and reproductive allocation remain poorly understood, especially in the context of intraspecific variation in ecologically important traits that facilitate species' adaptive capacities. We test whether a widespread pharmaceutical pollutant, fluoxetine (Prozac), disrupts the trade-off between individual-level (co)variation in behavioural, life-history and reproductive traits of freshwater fish.
View Article and Find Full Text PDFToxicol Ind Health
October 2024
Toxicology Excellence for Risk Assessment, Cincinnati, OH, USA.
Bis-(2-Chloroisopropyl) ether (BCIPE) was used as a solvent for fats, greases, paint, varnish removers, and in spotting and cleaning solutions. However, BCIPE has not been commercially manufactured or used for numerous years. In experimental animal studies, BCIPE is moderately toxic following acute oral, dermal, and inhalation routes of exposure.
View Article and Find Full Text PDFSci Total Environ
March 2024
Centre of Marine Sciences (CCMAR/CIMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; International Institution of Marine Science, Shanghai Ocean University, Shanghai, China. Electronic address:
Numerous studies have identified the detrimental effects for the biosphere of large plastic debris, the effect of microplastics (MPs) and nanoplastics (NPs) is less clear. The skin is the first point of contact with NPs, and skin fibroblasts have a vital role in maintaining skin structure and function. Here, a comparative approach is taken using three fibroblast cell lines from the zebrafish (SJD.
View Article and Find Full Text PDFEnviron Int
January 2024
Molecular Toxicology Interdepartmental Program, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA. Electronic address:
Physiol Res
August 2023
Department of Neurology, Tangshan Gongren Hospital, Tangshan, Hebei Province, China.
Oxidative stress and autophagy are potential mechanisms associated with cerebral ischemia/reperfusion injury (IRI) and is usually linked to inflammatory responses and apoptosis. Curcumin has recently been demonstrated to exhibit anti-inflammatory, anti-oxidant, anti-apoptotic and autophagy regulation properties. However, mechanism of curcumin on IRI-induced oxidative stress and autophagy remains not well understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!