The function of the eyespot in phototaxis of the flagellate green alga Chlamydomonas reinhardtii Dangeard was studied using quantitative reflection confocal laser scanning microscopy and photoelectric measurements. The reflective properties of the eyespot and the photoreceptor current of the C. reinhardtii eyespot mutant ey 627, mt (-) were compared with those of Chlamydomonas strains possessing a well-developed eyespot. Under growth conditions in which strongly disorganized eyespots were observed in the mutant by electron microscopy, there was a significant reduction in the reflection intensity of the eyespot and in the amplitude ratio (500∶440 nm) of photoreceptor currents induced by flashes of 500- and 440-nm light in non-oriented cells. Photoelectrical responses of pre-oriented cells revealed that the latter effect is caused by an altered directional sensitivity of the antenna complex, whereas the functional state of the photoreceptor pigment is not strongly affected in mutant cells. Both the reflection intensity and the amplitude ratio of photoreceptor currents increased to the level of reference strains under conditions supporting the development of a well-organized eyespot in the mutant. Furthermore, incubation of the mutant with high concentrations of all-trans-retinal (10 μM), independent of whether carotenoid biosynthesis was inhibited or not, was found to increase the reflection intensity of the eyespot. An increase in the rate of photoorientation of the mutant occurred concomitant with the increase in the reflective properties of the mutant eyespot. These observations demonstrate the importance of an intact eyespot for interference reflection and absorption of phototactically active light, and thus for the directional sensitivity of the eyespot apparatus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00197043 | DOI Listing |
Environ Manage
January 2025
TECNALIA Research & Innovation, Basque Research and Technology Alliance (BRTA), Energy, climate, and urban transition, Parque Tecnológico de Bizkaia, Derio, Spain.
The extent and timescale of climate change impacts remain uncertain, including global temperature increase, sea level rise, and more frequent and intense extreme events. Uncertainties are compounded by cascading effects. Nevertheless, decision-makers must take action.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.; Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.; Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.. Electronic address:
Microplastics (MPs), defined as plastic particles smaller than 5 mm, have garnered considerable attention owing to their potential biological impact on human health. These particles exhibit a range of physicochemical properties, including size, shape, and surface oxidation. Nile Red is a prominent tool for detecting microplastics, enabling staining for dynamic analyses within biological systems.
View Article and Find Full Text PDFPlants (Basel)
January 2025
School of Life Sciences, Fudan University, Shanghai 200433, China.
: The functional traits of twigs and leaves are closely related to the ability of plants to cope with heterogeneous environments. The analysis of the characteristics of twigs and leaves and leaf thermal dissipation in riparian plants is of great significance for exploring the light energy allocation and ecological adaptation strategies of plant leaves in heterogeneous habitats. However, there are few studies on the correlation between the twig-leaf characteristics of riparian plants and their heat dissipation in light heterogeneous environments.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Civil Engineering and Engineering Management, National Quemoy University, Kinmen 89250, Taiwan.
Ground-based LiDAR technology has been widely applied in various fields for acquiring 3D point cloud data, including spatial coordinates, digital color information, and laser reflectance intensities (I-values). These datasets preserve the digital information of scanned objects, supporting value-added applications. However, raw point cloud data visually represent spatial features but lack attribute information, posing challenges for automated object classification and effective management.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Research Centre for Biomedical Engineering, City St George's, University of London, London EC1V 0HB, UK.
The effect of skin pigmentation on photoplethysmography and, specifically, pulse oximetry has recently received a significant amount of attention amongst researchers, especially since the COVID-19 pandemic. With most computational studies observing overestimation of arterial oxygen saturation (SpO) in individuals with darker skin, this study seeks to further investigate the root causes of these discrepancies. This study analysed intensity changes from Monte Carlo-simulated reflectance PPG signals across light, moderate, and dark skin types at oxygen saturations of 70% and 100% in MATLAB R2024a.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!