Vpr expression abolishes the capacity of HIV-1 infected cells to repair uracilated DNA.

Nucleic Acids Res

Centre d'étude d'agents Pathogènes et Biotechnologies pour la Santé (CPBS) - UMR 5236-CNRS - Université Montpellier 1 and 2, Montpellier, France and Centre de Biochimie Structurale, INSERM U1054, CNRS UMR5048, Université Montpellier 1 and 2, Montpellier, France.

Published: February 2014

The human immunodeficiency virus type 1 (HIV-1) Vpr protein binds to the cellular uracil-DNA glycosylase UNG2 and induces its degradation through the assembly with the DDB1-CUL4 ubiquitin ligase complex. This interaction counteracts the antiviral activity exerted by UNG2 on HIV-1 gene transcription, as previously reported by us. In this work, we show that Vpr expression in the context of HIV-1 infection markedly decreases UNG2 expression in transformed or primary CD4(+) T lymphocytes. We demonstrate for the first time that Vpr-UNG2 interaction significantly impairs the uracil excision activity of infected cells. The loss of uracil excision activity coincides with a significant accumulation of uracilated bases in the genome of infected cells without changes in cell division. Although UNG2 expression and uracil-DNA glycosylase activity are recovered after the peak of retroviral replication, the mutagenic effect of transient DNA uracilation in cycling cells should be taken into account. Therefore, the possible consequences of Vpr-mediated temporary depletion of endogenous nuclear UNG2 and subsequent alteration of the genomic integrity of infected cells need to be evaluated in the physiopathogenesis of HIV infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3919559PMC
http://dx.doi.org/10.1093/nar/gkt974DOI Listing

Publication Analysis

Top Keywords

infected cells
16
vpr expression
8
uracil-dna glycosylase
8
ung2 expression
8
uracil excision
8
excision activity
8
cells
5
ung2
5
expression abolishes
4
abolishes capacity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!