Purpose: The aim of this study was to compare planning target volume (PTV) defined on respiratory-gated positron emission tomography (PET)/CT (RG-PET/CT) to PTV based on ungated free-breathing CT and to evaluate if RG-PET/CT can be useful to personalize PTV by tailoring the target volume to the lesion motion in lung cancer patients.
Methods: Thirteen lung cancer patients (six men, mean age 70.0 years, 1 small cell lung cancer, 12 non-small cell lung cancer) who were candidates for radiation therapy were prospectively enrolled and submitted to RG-PET/CT. Ungated free-breathing CT images obtained during a PET/CT study were visually contoured by the radiation oncologist to define standard clinical target volumes (CTV1). Standard PTV (PTV1) resulted from CTV1 with the addition of 1-cm expansion of margins in all directions. RG-PET/CT images were contoured by the nuclear medicine physician and radiation oncologist according to a standardized institutional protocol for contouring gated images. Each CT and PET image of the patient's respiratory cycle phases was contoured to obtain the RG-CT-based CTV (CTV2) and the RG-PET/CT-based CTV (CTV3), respectively. RG-CT-based and RG-PET/CT-based PTV (PTV2 and PTV3, respectively) were then derived from gated CTVs with a margin expansion of 7-8 mm in head to feet direction and 5 mm in anterior to posterior and left to right direction. The portions of gated PTV2 and PTV3 geometrically not encompassed in PTV1 (PTV2 out PTV1 and PTV3 out PTV1) were also calculated.
Results: Mean ± SD CTV1, CTV2 and CTV3 were 30.5 ± 33.2, 43.1 ± 43.2 and 44.8 ± 45.2 ml, respectively. CTV1 was significantly smaller than CTV2 and CTV3 (p = 0.017 and 0.009 with Student's t test, respectively). No significant difference was found between CTV2 and CTV3. Mean ± SD of PTV1, PTV2 and PTV3 were 118.7 ± 94.1, 93.8 ± 80.2 and 97.0 ± 83.9 ml, respectively. PTV1 was significantly larger than PTV2 and PTV3 (p = 0.038 and 0.043 with Student's t test, respectively). No significant difference was found between PTV2 and PTV3. Mean ± SD values of PTV2 out PTV1 and PTV3 out PTV1 were 12.8 ± 25.4 and 14.3 ± 25.9 ml, respectively. The percentage values of PTV2 out PTV1 and PTV3 out PTV1 were not lower than 10 % of PTV1 in 6/13 cases (46.2 %) and than 20 % in 3/13 cases (23.1 %).
Conclusion: Our preliminary data showed that RG-PET/CT in lung cancer can affect not only the volume of PTV but also its shape, as demonstrated by the assessment of gated PTVs outside standard PTV. The use of a gating technique is thus crucial for better delineating PTV by tailoring the target volume to the lesion motion in lung cancer patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00259-013-2594-5 | DOI Listing |
J Inflamm Res
January 2025
Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.
Background: Chronic kidney disease (CKD) is a progressive condition that arises from diverse etiological factors, resulting in structural alterations and functional impairment of the kidneys. We aimed to establish the Anoikis-related gene signature in CKD by bioinformatics analysis.
Methods: We retrieved 3 datasets from the Gene Expression Omnibus (GEO) database to obtain differentially expressed genes (DEGs), followed by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) of them, which were intersected with Anoikis-related genes (ARGs) to derive Anoikis-related differentially expressed genes (ARDEGs).
Respir Med Case Rep
December 2024
Division of Pulmonary Disease and Critical Care Medicine, University of Kentucky College of Medicine, Bowling Green, KY, USA.
Primary pulmonary malignant melanoma is an extremely rare non-epithelial malignancy. Literature is merely limited to a few anecdotal case reports. Herein we present a case of a 74-year-old female who was diagnosed with primary malignant melanoma of the lung.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
Background: The Arp2/3 complex is a key regulator of tumor metastasis, and targeting its subunits offers potential for anti-metastatic therapy. However, the expression profiles, prognostic relevance, and diagnostic value of its subunits across cancers remain poorly understood. This study aims to investigate the clinical relevance of Arp2/3 complex subunits, particularly ARPC1A, in pan-cancer, and to further analyze the potential biological mechanisms of ARPC1A, as well as its association with immune infiltration and chemotherapy drug sensitivity.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hosipital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China.
In this article, we report the first case of a 61-year-old woman who was diagnosed with both nodules and cystic lesions in her lungs. The lung nodules were diagnosed as ALK-positive histiocytosis (APH) carrying an gene fusion, which microscopically displayed a mixed morphology of foamy cells, spindle cells, and Touton's giant cells. Immunohistochemistry showed expression of CD163, CD68, and ALK, while fluorescence hybridization (FISH) with second-generation sequencing (NGS) showed the ALK gene fusion with the FLCN gene variant.
View Article and Find Full Text PDFCytotechnology
April 2025
Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing University Cancer Hospital, Chongqing, 400030 China.
Unlabelled: Cancer-associated fibroblasts (CAFs) have been shown to play a crucial role in the progression of non-small cell lung cancer (NSCLC). Exosomes derived from CAFs have emerged as important mediators of intercellular communication in the tumor microenvironment, contributing to cancer progression. Therefore, it is essential to further investigate the mechanisms by which CAF-derived exosomes regulate NSCLC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!