The conventional determination of pulmonary vascular resistance does not indicate which vascular segments contribute to the total resistance of the pulmonary circulation. Using measurements of pressure and flow, the reservoir-wave model can be used to partition total pulmonary vascular resistance into arterial, microcirculation, and venous components. Changes to these resistance components are investigated during hypoxia and inhaled nitric oxide, volume loading, and positive end-expiratory pressure. The reservoir-wave model defines the pressure of a volume-related reservoir and the asymptotic pressure. The mean values of arterial and venous reservoir pressures and arterial and venous asymptotic pressures define a series of resistances between the main pulmonary artery and the pulmonary veins: the resistance of large and small arteries, the microcirculation, and veins. In 11 anaesthetized, open-chest dogs, pressure and flow were measured in the main pulmonary artery and a single pulmonary vein. Volume loading reduced each vascular resistance component, whereas positive end-expiratory pressure only increased microcirculation resistance. Hypoxia increased the resistance of small arteries and veins, whereas nitric oxide only decreased small-artery resistance significantly. The reservoir-wave model provides a novel method to deconstruct total pulmonary vascular resistance. The results are consistent with the expected physiological responses of the pulmonary circulation and provide additional information regarding which segments of the pulmonary circulation react to hypoxia and nitric oxide.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/japplphysiol.00750.2013 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.
A previous study classifies solid tumors based on collagen deposition and immune infiltration abundance, identifying a refractory subtype termed armored & cold tumors, characterized by elevated collagen deposition and diminished immune infiltration. Beyond its impact on immune infiltration, collagen deposition also influences tumor angiogenesis. This study systematically analyzes the association between immuno-collagenic subtypes and angiogenesis across diverse cancer types.
View Article and Find Full Text PDFClin Transplant
January 2025
Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine, University of Alberta, Edmonton, Canada.
Introduction: Preclinically, 24-hour continuous Ex-Situ Lung Perfusion (ESLP) is the longest duration achieved in large animal models and rejected human lungs. Here, we present our 36-hour Negative Pressure Ventilation (NPV)-ESLP protocol applied to porcine and rejected human lungs.
Methods: Five sets of donor domestic pig lungs (45-55 kg) underwent 36-hour NPV-ESLP.
Open Med (Wars)
January 2025
Endocrine Department, 920th Hospital of Joint Logistics Support Force, PLA, No. 212 Daguan Road, Xishan District, Kunming, 650000, Yunnan, China.
Background: Diabetes-related cognitive impairment is increasingly recognized as a significant complication, profoundly impacting patients' quality of life. This review aims to examine the pathophysiological mechanisms, clinical manifestations, risk factors, assessment and diagnosis, management strategies, and future research directions of cognitive impairment in diabetes.
Methodology: A comprehensive literature search was conducted using PubMed, Medline, and other medical databases to identify, review, and evaluate published articles on cognitive impairment in diabetes.
Acta Physiol (Oxf)
February 2025
Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China.
The blood-brain barrier (BBB) is a highly selective, semipermeable barrier critical for maintaining brain homeostasis. The BBB regulates the transport of essential nutrients, hormones, and signaling molecules between the bloodstream and the central nervous system (CNS), while simultaneously protecting the brain from potentially harmful substances and pathogens. This selective permeability ensures that the brain is nourished and shielded from toxins.
View Article and Find Full Text PDFSci China Life Sci
January 2025
Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
Skeletal muscle plays a significant role in both local and systemic energy metabolism. The current investigation aims to explore the role of the Bambi gene in skeletal muscle, focusing on its implications for muscle hypertrophy and systemic metabolism. We hypothesize that skeletal muscle-specific deletion of Bambi induces muscle hypertrophy, improves metabolic performance, and activates thermogenic adipocytes via the reprogramming of progenitor of iWAT, offering potential therapeutic strategies for metabolic syndromes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!