Genetically engineered mice are instrumental for the analysis of mammalian gene function in health and disease. As classical gene targeting, which is performed in embryonic stem (ES) cell cultures and generates chimeric mice, is a time-consuming and labor-intensive procedure, we recently used transcription activator-like (TAL) effector nucleases (TALENs) for mutagenesis of the mouse genome directly in one-cell embryos. Here we describe a stepwise protocol for the generation of knock-in and knockout mice, including the selection of TALEN-binding sites, the design and construction of TALEN coding regions and of mutagenic oligodeoxynucleotides (ODNs) and targeting vectors, mRNA production, embryo microinjection and the identification of modified alleles in founder mutants and their progeny. After a setup time of 2-3 weeks of hands-on work for TALEN construction, investigators can obtain first founder mutants for genes of choice within 7 weeks after embryo microinjections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nprot.2013.142 | DOI Listing |
Methods Cell Biol
January 2025
Department of Pharmacology, SPP School of Pharmacy & Technology Management, Mumbai, India. Electronic address:
The foremost cause of dementia is Alzheimer's disease (AD). The vital pathological hallmarks of AD are amyloid beta (Aβ) peptide and hyperphosphorylated tau (p-tau) protein. The current animal models used in AD research do not precisely replicate disease pathophysiology, making it difficult for researchers to quickly and effectively gather data or screen potential therapy possibilities.
View Article and Find Full Text PDFN Biotechnol
January 2025
Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China. Electronic address:
Primordial germ cells (PGCs) are the first germline stem cells to emerge during early embryonic development and are essential for the propagation and survival of species. Genome editing creates mutagenesis possibilities in vivo, but the generation of precise mutations in PGCs is still challenging. Here, we report an optimized approach for highly efficient genome editing via introducing biallelic variations in early embryos in zebrafish.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany.
The parthenogenetic life cycle of the stick insect Medauroidea extradentata offers unique advantages for the generation of genome-edited strains, as an isogenic and stable mutant line can in principle be achieved already in the first generation (G0). However, genetic tools for the manipulation of their genes had not been developed until now. Here, we successfully implement CRISPR/Cas9 as a technique to modify the genome of the stick insect M.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
College of Animal Science and Technology, Shihezi University, Shihezi 832000, China.
Early embryonic development relies on intricately regulated gene expression, and miRNAs influence zygotic genome activation (ZGA), cleavage, and cell fate determination through post-transcriptional regulatory mechanisms. miR-192 is expressed in early pig embryos and participates in various reproductive processes. However, its role in pre-implantation pig embryo development remains poorly understood.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Biological Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan.
In eukaryotes, mRNAs with long poly(A) tails are translationally active, but deadenylation and uridylation of these tails generally cause mRNA degradation. However, the fate of uridylated mRNAs that are not degraded quickly remains obscure. Here, using tail-seq and microinjection of the 3' region of mRNA, we report that some mRNAs in starfish are re-polyadenylated to be translationally active after deadenylation and uridylation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!