The principal intent of the present contribution is to decipher the binding domain and structural changes of trypsin (TPS), a proteolytic globular enzyme and two serum proteins, namely, bovine serum albumin (BSA), human serum albumin (HSA) association with a newly synthesized bioactive isoquinolindione derivative (ANAP) by employing steady state, time resolved fluorescence and circular dichroism (CD) techniques. Intramolecular charge transfer emission (ICT) of ANAP is found to be responsible for the commendable sensitivity of the probe as an extrinsic fluorescent marker to the protein environments. A sharp distinctive feature of determined micropolarities in proteinous media clearly demarcates the differential extent of hydrophobicity around the encapsulated ANAP. A proficient efficiency tunable fluorescence (Förster type) resonance energy transfer (FRET) from the excited tryptophan to ANAP reveals that ANAP binds in the close vicinity of the tryptophan residue in protein. Molecular modeling simulation has been exploited for evaluating the probable interaction site of ANAP in proteinous assembly which shows subdomain IIA are earmarked to possess affinity for ANAP in serum albumins whereas S1 binding pocket in TPS has been found potential binding region for ANAP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jphotobiol.2013.09.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!