Marinesco-Sjögren syndrome is a rare autosomal recessive multisystem disorder featuring cerebellar ataxia, early-onset cataracts, chronic myopathy, variable intellectual disability and delayed motor development. More recently, mutations in the SIL1 gene, which encodes an endoplasmic reticulum resident co-chaperone, were identified as the main cause of Marinesco-Sjögren syndrome. Here we describe the results of SIL1 mutation analysis in 62 patients presenting with early-onset ataxia, cataracts and myopathy or combinations of at least two of these. We obtained a mutation detection rate of 60% (15/25) among patients with the characteristic Marinesco-Sjögren syndrome triad (ataxia, cataracts, myopathy) whereas the detection rate in the group of patients with more variable phenotypic presentation was below 3% (1/37). We report 16 unrelated families with a total of 19 different SIL1 mutations. Among these mutations are 15 previously unreported changes, including single- and multi-exon deletions. Based on data from our screening cohort and data compiled from the literature we found that SIL1 mutations are invariably associated with the combination of a cerebellar syndrome and chronic myopathy. Cataracts were observed in all patients beyond the age of 7 years, but might be missing in infants. Six patients with SIL1 mutations had no intellectual disability, extending the known wide range of cognitive capabilities in Marinesco-Sjögren syndrome to include normal intelligence. Modestly constant features were somatic growth retardation, skeletal abnormalities and pyramidal tract signs. Examination of mutant SIL1 expression in cultured patient lymphoblasts suggested that SIL1 mutations result in severely reduced SIL1 protein levels irrespective of the type and position of mutations. Our data broaden the SIL1 mutation spectrum and confirm that SIL1 is the major Marinesco-Sjögren syndrome gene. SIL1 patients usually present with the characteristic triad but cataracts might be missing in young children. As cognitive impairment is not obligatory, patients without intellectual disability but a Marinesco-Sjögren syndrome-compatible phenotype should receive SIL1 mutation analysis. Despite allelic heterogeneity and many families with private mutations, the phenotype related to SIL1 mutations is relatively homogenous. Based on SIL1 expression studies we speculate that this may arise from a uniform effect of different mutations on protein expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/brain/awt283 | DOI Listing |
J Transl Med
August 2024
Department of Innovative Technologies in Medicine and Dentistry, Chieti, Italy.
Background: Marinesco-Sjögren syndrome (MSS) is an autosomal recessive neuromuscular disorder that arises in early childhood and is characterized by congenital cataracts, myopathy associated with muscle weakness, and degeneration of Purkinje neurons leading to ataxia. About 60% of MSS patients have loss-of-function mutations in the SIL1 gene. Sil1 is an endoplasmic reticulum (ER) protein required for the release of ADP from the master chaperone Bip, which in turn will release the folded proteins.
View Article and Find Full Text PDFMol Biol Rep
July 2024
Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
Background: Inherited neuromuscular (NMD) and neurodegenerative diseases (NDD) belong to two distinct categories that disturb different components of the nervous system, leading to a variety of different symptoms and clinical manifestations. Both NMD and NDD are a heterogeneous group of genetic conditions. Genetic variations in the SGCA and SIL1 genes have been implicated in causing Limb Girdle Muscular Dystrophy (LGMD), a type of neuromuscular disorder, and Marinesco-Sjögren Syndrome (MSS) which is a neurodegenerative disorder.
View Article and Find Full Text PDFMol Neurobiol
June 2024
Department of Physiology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan, China.
SIL1 is a nucleotide exchange factor for the molecular chaperone protein Bip in the endoplasmic reticulum that plays a crucial role in protein folding. The Sil1 gene is currently the only known causative gene of Marinesco-Sjögren syndrome (MSS). Intellectual developmental disability is the main symptom of MSS, and its mechanism has not been fully elucidated.
View Article and Find Full Text PDFCerebellum
April 2024
Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Via Sergio Pansini 5, 80131, Naples, Italy.
The association of hypogonadism and cerebellar ataxia was first recognized in 1908 by Gordon Holmes. Since the seminal description, several heterogeneous phenotypes have been reported, differing for age at onset, associated features, and gonadotropins levels. In the last decade, the genetic bases of these disorders are being progressively uncovered.
View Article and Find Full Text PDFOrphanet J Rare Dis
June 2022
National Institute On Drug Abuse, 251 Bayview Blvd, Baltimore, MD, 21224, USA.
Background: Aberrations to endoplasmic/sarcoplasmic reticulum (ER/SR) calcium concentration can result in the departure of endogenous proteins in a phenomenon termed exodosis. Redistribution of the ER/SR proteome can have deleterious effects to cell function and cell viability, often contributing to disease pathogenesis. Many proteins prone to exodosis reside in the ER/SR via an ER retention/retrieval sequence (ERS) and are involved in protein folding, protein modification, and protein trafficking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!