Berberine in combination with doxorubicin suppresses growth of murine melanoma B16F10 cells in culture and xenograft.

Phytomedicine

Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India. Electronic address:

Published: February 2014

Melanoma is very aggressive and major cause of mortality due to skin cancer. Herein, we studied the anticancer effects of berberine, a plant alkaloid, in combination with doxorubicin on murine melanoma B16F10 cells in vitro and in vivo. This drug combination strongly inhibited cell growth and induced cell death, and caused G2/M arrest in cell cycle together with a decrease in Kip1/p27. Berberine showed stronger inhibitory effect on ERK1/2 phosphorylation as compared to Akt phosphorylation, whereas the combination of the drugs showed greater inhibitory effect on Akt phosphorylation. In murine B16F10 xenograft, cells were implanted into mice and treated with vehicle (methyl cellulose) or berberine (100mg/kg of body weight/day by oral gavage) or doxorubicin (4 mg/kg of body weight/week by intraperitoneal injection) or combination of berberine and doxorubicin. Berberine alone did not show any considerable effect on tumor growth as observed with doxorubicin, however, the combination of the two drugs resulted in a significant and strong decrease in tumor volume (85%, p<0.005) and tumor weight (78%, p<0.05) as compared to control. Immunohistochemical analysis of tumor samples showed that drug combination decreased PCNA-positive cells (82%, p<0.001) and increased cleaved caspase-3 positive cells (3-fold, p<0.05) indicating inhibition of proliferation and an increase in apoptosis, respectively. Overall, our findings suggest that berberine and doxorubicin could be a novel combination to inhibit melanoma tumor growth.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phymed.2013.09.002DOI Listing

Publication Analysis

Top Keywords

combination doxorubicin
8
murine melanoma
8
melanoma b16f10
8
b16f10 cells
8
akt phosphorylation
8
combination drugs
8
berberine
6
doxorubicin
5
combination
5
berberine combination
4

Similar Publications

High drug resistance remains a challenge for chemotherapy against hepatocellular carcinoma (HCC). Combining chemotherapeutic agents with microRNA (miRNA), which simultaneously regulates multiple pathways, offers a promising approach to improve therapeutic efficacy against HCC. Although cationic amphiphilic copolymers have been used to co-deliver these agents, their effectiveness is often limited by low co-encapsulation efficiency and inherent cationic toxicity.

View Article and Find Full Text PDF

A Multifunctional MIL-101-NH(Fe) Nanoplatform for Synergistic Melanoma Therapy.

Int J Nanomedicine

January 2025

Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China.

Background: Melanoma is an aggressive form of skin cancer, and single-modality treatments often fail to prevent tumor recurrence and metastasis. Combination therapy has emerged as an effective approach to improve treatment outcomes.

Methods: In this study, we developed a multifunctional nanoplatform, MIL@DOX@ICG, utilizing MIL-101-NH(Fe) as a carrier to co-deliver the chemotherapeutic agent doxorubicin (DOX) and the photosensitizer indocyanine green (ICG).

View Article and Find Full Text PDF

Background: There is limited knowledge of the long-term effects on the immune system after treatment for diffuse large B-cell lymphoma (DLBCL).

Methods: This study included DLBCL patients from the Danish Lymphoma Registry who obtained complete remission (CR) after (R)-CHOP (cyclophosphamide, doxorubicin, vincristine, prednisolone)-like immunochemotherapy. Each R CHOP-like treated patient was matched to five comparators from the Danish background population and furthermore compared to R CHOP-like treated patients.

View Article and Find Full Text PDF

Here, we report a case of Epstein-Barr virus-positive central nervous system-post-transplant lymphoproliferative disorder (CNS-PTLD) patient who failed to achieve complete metabolic remission (CMR) after successively trying a methotrexate-based regimen combined with orelabrutinib or whole-brain radiotherapy and encountered intracranial hemorrhage during orelabrutinib treatment. Ultimately, the patient achieved CMR after one cycle of acalabrutinib in combination with temozolomide, teniposide, liposomal doxorubicin, dexamethasone, and rituximab (TEDDi-R). Following another cycle of TEDDi-R treatment, he has been receiving acalabrutinib maintenance up to now and remained in CMR.

View Article and Find Full Text PDF

Melanoma extracellular vesicles membrane coated nanoparticles as targeted delivery carriers for tumor and lungs.

Mater Today Bio

February 2025

Department of Biochemistry and Molecular Pharmacology. Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Via Mario Negri, 2, Milan, Italy.

Targeting is the most challenging problem to solve for drug delivery systems. Despite the use of targeting units such as antibodies, peptides and proteins to increase their penetration in tumors the amount of therapeutics that reach the target is very small, even with the use of nanoparticles (NPs). Nature has solved the selectivity problem using a combination of proteins and lipids that are exposed on the cell membranes and are able to recognize specific tissues as demonstrated by cancer metastasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!