Activation of Bothrops jararaca snake venom gland and venom production: a proteomic approach.

J Proteomics

Laboratório de Farmacologia, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900 São Paulo, Brazil.

Published: December 2013

Unlabelled: Viperidae venom glands have a basal-central lumen where the venom produced by secretory cells is stored. We have shown that the protein composition of venom gland changes during the venom production cycle. Here, we analyzed the venom gland proteins during the venom production cycle by proteomic approach. We identified specific proteins in each stage of the cycle. Protein species from endoplasmic reticulum (PDI and GPR78) and cytoplasm (actin, vimentin, tropomyosin, proteasome subunit alpha type-1, thioredoxin, and 40S ribosomal protein) are more abundant in the activated stage, probably increasing the synthesis and secretion of toxins. We also showed for the first time that many toxins are present in the secretory cells during the quiescent stage. C-type lectin-like and serine proteinases were more abundant in the quiescent stage, and GPIb-BP and coagulation factor IX/X were present only in this stage. Metalloproteinases, L-amino acid oxidases, PLA2 and snake venom metalloproteinase and PLA2 inhibitors, and disintegrins were more abundant in the activated stage. Regarding metalloproteinases, the presence of peptides corresponding to the pro-domain was observed. These results allow us to better understand the mechanism of venom gland activation and venom production, contributing to studies about snake toxins and their diversity.

Biological Significance: In this study we identified, for the first time, the presence of different toxins in the snake venom gland in its quiescent stage. Furthermore, we showed that not all toxins are synthesized during the activated stage of the gland, suggesting an asynchronous synthesis for different toxins. Besides, the synthesis of some protein species from endoplasmic reticulum and cytoplasm, which are related to the synthesis and secretion processes, are more abundant in the activated stage of this gland. The knowledge of the proteomic composition of the venom gland in different stages of the venom production cycle will give us new insights into the mechanism of venom gland activation and venom production, contributing to studies about snake toxins and their diversity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jprot.2013.10.026DOI Listing

Publication Analysis

Top Keywords

venom gland
28
venom production
24
venom
16
activated stage
16
snake venom
12
production cycle
12
abundant activated
12
quiescent stage
12
gland
9
stage
9

Similar Publications

SARS-CoV-2 is from the enveloped virus family responsible for the COVID-19 pandemic. No efficient drugs are currently available to treat infection explicitly caused by this virus. Therefore, searching for effective treatments for severe illness caused by SARS-CoV-2 is crucial.

View Article and Find Full Text PDF

A Tachyplesin Antimicrobial Peptide from Theraphosidae Spiders with Potent Antifungal Activity Against .

Microorganisms

December 2024

Key Laboratory of Genetic Evolution & Animal Models, Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China.

The venoms of Theraphosidae spiders have evolved into diverse natural pharmacopeias through selective pressures. is a global health threat that frequently causes life-threatening meningitis and fungemia, particularly in immunocompromised patients. In this study, we identify a novel anti- peptide, QS18 (QCFKVCFRKRCFTKCSRS), from the venom gland of China's native spider species by utilizing bioinformatic tools.

View Article and Find Full Text PDF
Article Synopsis
  • The rise of antibiotic-resistant bacteria (ARBs) poses a significant global health threat due to increasing infections and mortality rates.
  • The study focused on using a deep-learning model to identify antimicrobial peptides (AMPs) from spider venom, with a promising candidate, PA-Win2, showing strong effectiveness against multidrug-resistant strains.
  • PA-Win2 not only inhibited bacterial growth and biofilm formation but also altered gene expression linked to bacterial survival, suggesting its potential as a new treatment for ARB infections.
View Article and Find Full Text PDF

Parotid enlargement due to common krait (Bungarus caeruleus) envenomation: a case series.

Trans R Soc Trop Med Hyg

January 2025

Department of Radiodiagnosis, Dr RPGMC, Tanda, Kangra (HP)  India 176001.

We describe a series of five patients with bilateral parotid enlargement as a sequalae to envenomation by the common krait (Bungarus caeruleus). Fine-needle aspiration cytology of the parotid gland was performed in four cases. The cytology revealed a mild lymphocytic inflammatory response in a red blood cell mixed proteinaceous background.

View Article and Find Full Text PDF

Exploring the Venom Gland Transcriptome of and : De Novo Assembly and Analysis of Novel Toxic Proteins.

Toxins (Basel)

November 2024

Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador.

Previous proteomic studies of viperid venom revealed that it is mainly composed of metalloproteinases (SVMPs), serine proteinases (SVSPs), phospholipase A2 (PLA2), and C-type lectins (CTLs). However, other proteins appear in minor amounts that affect prey and need to be identified. This study aimed to identify novel toxic proteins in the venom gland transcriptome of and , using data from NCBI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!