Heat acclimation decreases the growth hormone response to acute constant-load exercise in the heat.

Growth Horm IGF Res

Estonian Centre of Behavioural and Health Sciences, University of Tartu, Estonia; Institute of Psychology, University of Tartu, 50090 Tartu, Estonia.

Published: February 2014

Objective: The major objective of this study was to elucidate the effect of heat acclimation on blood growth hormone (GH) response to moderate intensity exhausting exercise in the heat. In addition, the potential relationship between inter-individual differences in GH response to exercise and variability in exercise-induced sweat loss was investigated.

Design: Twenty young men completed three exercise tests on a treadmill: H1 (walk at 60% VO₂peak until exhaustion at 42 °C), N (walk at 22 °C; duration equal to H1) and H2 (walk until exhaustion at 42 °C after a 10-day heat acclimation program). Core temperature (T(c)) was recorded continuously and venous blood samples were taken before, during and after each exercise test. Exercise-induced sweat production was calculated on the basis of body mass change taking into account water intake and the volume of blood samples drawn.

Results: Lower pre-exercise T(c), lower rate of rise in T(c) during exercise, and prolonged time to exhaustion in H2 compared with H1 revealed that the subjects successfully achieved an acclimated state. Overall, serum GH level was higher in H1 compared with both N and H2 (p<0.001) but did not differ between the two latter trials (p>0.05). T(c) correlated with serum GH concentration (r=0.615, p<0.01). Analysis of the individual data revealed a group (n=9) possessing a threshold-like pattern of the relationship between T(c) and blood GH response, whereas a plateau-like pattern was evident in the rest of the subjects (n=11). Both sweat production (r=0.596; p<0.001) and the rate of sweat production (r=0.457; p<0.001) correlated with the growth hormone area under the curve.

Conclusion: Heat acclimation decreases the GH response to moderate intensity exhausting exercise in the heat. GH may have a modest stimulating effect on whole-body sweat production during exercise.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ghir.2013.10.001DOI Listing

Publication Analysis

Top Keywords

heat acclimation
12
growth hormone
8
hormone response
8
exercise heat
8
exercise-induced sweat
8
exhaustion °c
8
blood samples
8
exercise
6
heat
5
acclimation decreases
4

Similar Publications

Coral reefs worldwide are threatened by increasing ocean temperatures because of the sensitivity of the coral-algal symbiosis to thermal stress. Reef-building corals form symbiotic relationships with dinoflagellates (family Symbiodiniaceae), including those species which acquire their initial symbiont complement predominately from their parents. Changes in the composition of symbiont communities, through the mechanisms of symbiont shuffling or switching, can modulate the host's thermal limits.

View Article and Find Full Text PDF

Genome-Wide Analysis of the Hsf Gene Family in and Function in Thermotolerance.

Int J Mol Sci

December 2024

Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China.

Heat shock transcription factors (Hsfs) play an important role in response to high temperatures by binding to the promoter of the heat shock protein gene to promote its expression. As an important ornamental plant, the rose often encounters heat stress during the flowering process. However, there are few studies on the family in roses ().

View Article and Find Full Text PDF

Heat stress transcription factors (HSFs) play a critical role in orchestrating cellular responses to elevated temperatures and various stress conditions. While extensively studied in model plants, the gene family in remains unexplored, despite the availability of its sequenced genome. In this study, we employed bioinformatics approaches to identify 21 genes within the genome, revealing their uneven distribution across chromosomes.

View Article and Find Full Text PDF

Activation and memory of the heatshock response is mediated by Prion-like domains of sensory HSFs in Arabidopsis.

Mol Plant

January 2025

Leibniz Institut für Gemüse und Zierpflanzenbau (IGZ) e.V., Großbeeren, Germany; Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany. Electronic address:

Plants are able to sense and remember heat stress. An initial priming heat stress enables plants to acclimate so that they are able to survive a subsequent higher temperature. The heatshock transcription factors (HSFs) play a crucial role in this process, but the mechanisms by which plants sense heat stress are not well understood.

View Article and Find Full Text PDF
Article Synopsis
  • Pugionium cornutum demonstrates strong tolerance to drought, salt, and disease, but the ways it copes with these stresses are not well understood.
  • In this study, researchers identified the PcNAC25 transcription factor gene, which is linked to stress response and enhances drought and salt tolerance when overexpressed in Arabidopsis.
  • The findings suggest that PcNAC25 acts as a positive regulator by boosting ROS-scavenging enzyme activity and promoting root growth, paving the way for more research on its regulatory mechanisms against environmental stresses.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!