Background: Nucleosomes are present throughout the genome and must be dynamically regulated to accommodate binding of transcription factors and RNA polymerase machineries by various mechanisms. Despite the development of protocols and techniques that have enabled us to map nucleosome occupancy genome-wide, the dynamic properties of nucleosomes remain poorly understood, particularly in mammalian cells. The histone variant H3.3 is incorporated into chromatin independently of DNA replication and requires displacement of existing nucleosomes for its deposition. Here, we measure H3.3 turnover at high resolution in the mammalian genome in order to present a genome-wide characterization of replication-independent H3.3-nucleosome dynamics.
Results: We developed a system to study the DNA replication-independent turnover of nucleosomes containing the histone variant H3.3 in mammalian cells. By measuring the genome-wide incorporation of H3.3 at different time points following epitope-tagged H3.3 expression, we find three categories of H3.3-nucleosome turnover in vivo: rapid turnover, intermediate turnover and, specifically at telomeres, slow turnover. Our data indicate that H3.3-containing nucleosomes at enhancers and promoters undergo rapid turnover that is associated with active histone modification marks including H3K4me1, H3K4me3, H3K9ac, H3K27ac and the histone variant H2A.Z. The rate of turnover is negatively correlated with H3K27me3 at regulatory regions and with H3K36me3 at gene bodies.
Conclusions: We have established a reliable approach to measure turnover rates of H3.3-containing nucleosomes on a genome-wide level in mammalian cells. Our results suggest that distinct mechanisms control the dynamics of H3.3 incorporation at functionally different genomic regions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3983652 | PMC |
http://dx.doi.org/10.1186/gb-2013-14-10-r121 | DOI Listing |
J Biol Chem
January 2025
Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58-62, 35390 Giessen, Germany. Electronic address:
In 2023, the brilliant chromatin biologist C. David Allis passed away leaving a large void in the scientific community and broken hearts in his family and friends. With this review, we want to tribute Dave's enduring inspiration by focusing on the histone variant H2A.
View Article and Find Full Text PDFCultured human embryonic stem cells (hESCs) can develop genetic anomalies that increase their susceptibility to transformation. In this study, we characterized a variant hESC (vhESC) line and investigated the molecular mechanisms leading to the drift towards a transformed state. Our findings revealed that vhESCs up-regulate EMT-specific markers, accelerate wound healing, exhibit compromised lineage differentiation, and retain pluripotency gene expression in teratomas.
View Article and Find Full Text PDFNat Commun
December 2024
State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, PR China.
The INO80 chromatin remodeling complex plays a critical role in shaping the dynamic chromatin environment. The diverse functions of the evolutionarily conserved INO80 complex have been widely reported. However, the role of INO80 in modulating the histone variant H2A.
View Article and Find Full Text PDFCurr Biol
December 2024
The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA. Electronic address:
Serine 31 is a phospho-site unique to the histone H3.3 variant; mitotic phospho-Ser31 is restricted to pericentromeric heterochromatin, and disruption of phospho-Ser31 results in chromosome segregation defects and loss of p53-dependant G cell-cycle arrest. Ser31 is proximal to the H3.
View Article and Find Full Text PDFHum Mol Genet
December 2024
Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, No. 1 Shanghai Road, Gulou District, Nanjing 210029, China.
The NC_000006.12: g.34887814C>G variant in TAF11 was identified as a potential functional variant in a Chinese pedigree including two non-syndromic cleft lip only (NSCLO) cases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!