Background: Molecular phylogenetic analyses have revealed that Hexapoda and Crustacea form a common clade (the Pancrustacea), which is now widely accepted among zoologists; however, the origin of Hexapoda remains unresolved. The main problems are the unclear relationships among the basal hexapod lineages, Protura (proturans), Collembola (springtails), Diplura (diplurans), and Ectognatha (bristletails, silverfishes, and all winged insects). Mitogenomic analyses have challenged hexapod monophyly and suggested the reciprocal paraphyly of Hexapoda and Crustacea, whereas studies based on nuclear molecular data support the monophyletic origin of hexapods. Additionally, there are significant discrepancies with respect to these issues between the results of morphological and molecular studies. To investigate these problems, we performed phylogenetic analyses of Pancrustacea based on the protein sequences of three orthologous nuclear genes encoding the catalytic subunit of DNA polymerase delta and the largest and second largest subunits of RNA polymerase II from 64 species of arthropods, including representatives of all hexapod orders.
Results: Phylogenetic analyses were conducted based on the inferred amino acid (aa) sequences (~3400 aa in total) of the three genes using the maximum likelihood (ML) method and Bayesian inference. Analyses were also performed with additional datasets generated by excluding long-branch taxa or by using different outgroups. These analyses all yielded essentially the same results. All hexapods were clustered into a common clade, with Branchiopoda as its sister lineage, whereas Crustacea was paraphyletic. Within Hexapoda, the lineages Ectognatha, Palaeoptera, Neoptera, Polyneoptera, and Holometabola were each confirmed to be monophyletic with robust support, but monophyly was not supported for Entognatha (Protura + Collembola + Diplura), Ellipura (Protura + Collembola), or Nonoculata (Protura + Diplura). Instead, our results showed that Protura is the sister lineage to all other hexapods and that Diplura or Diplura + Collembola is closely related to Ectognatha.
Conclusion: This is the first study to include all hexapod orders in a phylogenetic analysis using multiple nuclear protein-coding genes to investigate the phylogeny of Hexapoda, with an emphasis on Entognatha. The results strongly support the monophyletic origin of hexapods but reject the monophyly of Entognatha, Ellipura, and Nonoculata. Our results provided the first molecular evidence in support of Protura as the sister group to other hexapods. These findings are expected to provide additional insights into the origin of hexapods and the processes involved in the adaptation of insects to life on land.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4228403 | PMC |
http://dx.doi.org/10.1186/1471-2148-13-236 | DOI Listing |
Environ Microbiol
January 2025
Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
The Hepatincolaceae (Alphaproteobacteria) are a group of bacteria that inhabit the gut of arthropods and other ecdysozoans, associating extracellularly with microvilli. Previous phylogenetic studies, primarily single-gene analyses, suggested their relationship to the Holosporales, which includes intracellular bacteria in protist hosts. However, the genomics of Hepatincolaceae is still in its early stages.
View Article and Find Full Text PDFEnviron Microbiol
January 2025
Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
The Canadian province of Alberta contains substantial oilsands reservoirs, consisting of bitumen, clay and sand. Extracting oil involves separating bitumen from inorganic particles using hot water and chemical diluents, resulting in liquid tailings waste with ecotoxicologically significant compounds. Ongoing efforts aim to reclaim tailings-affected areas, with protist colonisation serving as one assessment method of reclamation progress.
View Article and Find Full Text PDFNutrients
December 2024
Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS "Saverio de Bellis", Castellana Grotte, 70013 Bari, Italy.
Aims: This study explores the link between body mass index (BMI), intestinal permeability, and associated changes in anthropometric and impedance parameters, lipid profiles, inflammatory markers, fecal metabolites, and gut microbiota taxa composition in participants having excessive body mass.
Methods: A cohort of 58 obese individuals with comparable diet, age, and height was divided into three groups based on a priori clustering analyses that fit with BMI class ranges: Group I (25-29.9), Group II (30-39.
Int J Mol Sci
January 2025
Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050000, China.
SKP1 constitutes the Skp1-Cullin-F-box ubiquitin E3 ligase (SCF), which plays a role in plant growth and development and biotic and abiotic stress in ubiquitination. However, the response of the gene family to abiotic and biotic stresses in cotton has not been well characterized. In this study, a total of 72 genes with the conserved domain of SKP1 were identified in four Gossypium species.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
s.s. belongs to the Cercidoideae subfamily, located at the base of the Leguminosae family.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!