Unlabelled: The objective of this study was to evaluate the influence of a genetic variant in the multidrug resistance 1 gene (MDR1) on hepatocellular carcinoma (HCC) risk. This case-control study was conducted in a Chinese population of 645 HCC cases and 658 cancer-free controls. The genotype of the c.3751G>A genetic variant in the MDR1 gene was investigated by created restriction site-polymerase chain reaction (CRS-PCR) and DNA sequencing methods. Our data demonstrated significantly differences detected in the allelic and genotypic frequencies between HCC cases and those of cancer-free controls. Association analyses indicated that there were statistically increased risk of HCC in the homozygote comparison (AA versus (vs.) GG: OR = 2.22, 95% CI 1.51-3.27, χ(2) = 16.90, P < 0.001), dominant model (AA/GA vs. GG: OR = 1.25, 95% CI 1.00-1.55, χ(2) = 3.98, P = 0.046), recessive model (AA vs.

Ga/gg: OR = 2.14, 95% CI 1.47-3.09, χ(2) = 16.68, P < 0.001) and allele comparison (A vs. G: OR = 1.33, 95% CI 1.13-1.57, χ(2) = 11.66, P = 0.001). The allele-A and genotype-AA may contribute to HCC susceptibility. These preliminary findings suggest that the c.3751G>A genetic variant in the MDR1 gene is potentially related to HCC susceptibility in a Chinese Han population, and might be used as a molecular marker for evaluating HCC susceptibility.

Download full-text PDF

Source
http://dx.doi.org/10.7314/apjcp.2013.14.9.5361DOI Listing

Publication Analysis

Top Keywords

genetic variant
16
c3751g>a genetic
12
variant mdr1
12
hcc susceptibility
12
mdr1 hepatocellular
8
hepatocellular carcinoma
8
chinese han
8
han population
8
hcc cases
8
cancer-free controls
8

Similar Publications

Radiation pneumonitis (RP) is characterized by inflammation and is associated with autophagy. However, the relationship between functional genetic variants of autophagy-related genes and radiation pneumonitis remains unknow. In this study we aimed to investigate whether genetic variants of genes involved in autophagy are associated with radiation pneumonitis.

View Article and Find Full Text PDF

Copy-number variants (CNVs) are an important class of genetic variation that can mediate rapid adaptive evolution. Whereas CNVs can increase the relative fitness of the organism, they can also incur a cost due to the associated increased gene expression and repetitive DNA. We previously evolved populations of Saccharomyces cerevisiae over hundreds of generations in glutamine-limited (Gln-) chemostats and observed the recurrent evolution of CNVs at the GAP1 locus.

View Article and Find Full Text PDF

Pharmacogenetics: Opportunities for the Research Program and Other Large Data Sets to Advance the Field.

Annu Rev Pharmacol Toxicol

January 2025

Clinical and Translational Science Institute, Colleges of Medicine and Pharmacy, The Ohio State University, Columbus, Ohio, USA.

Pharmacogenetic variation is common and an established driver of response for many drugs. There has been tremendous progress in pharmacogenetics knowledge over the last 30 years and in clinical implementation of that knowledge over the last 15 years. But there have also been many examples where translation has stalled because of the lack of available data sets for discovery or validation research.

View Article and Find Full Text PDF

Decoding the Therapeutic Target SVEP1: Harnessing Molecular Trait GWASs to Unravel Mechanisms of Human Disease.

Annu Rev Pharmacol Toxicol

January 2025

Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA; email:

Although human genetics has substantial potential to illuminate novel disease pathways and facilitate drug development, identifying causal variants and deciphering their mechanisms remain challenging. We believe these challenges can be addressed, in part, by creatively repurposing the results of molecular trait genome-wide association studies (GWASs). In this review, we introduce techniques related to molecular GWASs and unconventionally apply them to understanding , a human coronary artery disease risk locus.

View Article and Find Full Text PDF

Human Oncostatin M deficiency underlies an inherited severe bone marrow failure syndrome.

J Clin Invest

January 2025

Laboratory of Genome Dynamics in the Immune, INSERM UMR 116, Équipe Labellisée LIGUE 2023, Paris, France.

Oncostatin M (OSM) is a cytokine with the unique ability to interact with both the OSM receptor (OSMR) and the leukemia inhibitory factor receptor (LIFR). On the other hand, OSMR interacts with IL31RA to form the interleukin-31 receptor. This intricate network of cytokines and receptors makes it difficult to understand the specific function of OSM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!