Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Targeting the redox metabolism of Plasmodium falciparum to create a fatal overload of oxidative stress is a route to explore the discovery of new antimalarial drugs. There are three main possibilities to target the redox metabolism of P. falciparum at the erythrocytic stage: selective targeting and inhibition of a redox P. falciparum protein or enzyme; oxidant drugs targeting essential parasite components and heme by-products; and redox cycler drugs targeting the parasitized red blood cell. Oxidants and redox cycler agents, with or without specific targets, may disrupt the fragile parasitized erythrocyte redox-dependent architecture given that: redox equilibrium plays a vital role at the erythrocytic stage; P. falciparum possesses major NADPH-dependent redox systems, such as glutathione and thioredoxin ones; and the protein-NADPH-dependent phosphorylation-dephosphorylation process is involved in building new permeation pathways and channels for the nutrient-waste import-export traffic of the parasite.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4155/fmc.13.159 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!