Applicability of methyl propionate to microencapsulation was evaluated with regard to volatility, capability of forming emulsions, and their quality. An emulsion-based technique was then developed to encapsulate progesterone into poly-d,l-lactide-co-glycolide microspheres. Their characteristics were compared with those prepared using ethyl acetate. Our results demonstrated that methyl propionate had greater evaporative tendency and less water miscibility than ethyl acetate did. The former allowed us to prepare good microspheres. Their average volume mean diameter was 68.3 ± 1.7 μm with a span index of 0.91 ± 0.13. Progesterone did not undergo polymorphic transition during microencapsulation, and its encapsulation efficiency ranged from 41.80 ± 1.83 to 85.64 ± 1.95%. Residual methyl propionate in various microspheres was found to be 0.97 ± 0.03 to 1.54 ± 0.07%. Such microsphere characteristics were quite similar to those prepared by the ethyl acetate-based microencapsulation process. Overall, our findings reflect that methyl propionate has a potential to become an invaluable solvent for microencapsulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/02652048.2013.843729 | DOI Listing |
Front Microbiol
December 2024
Institute of Microbiology, Leibniz University Hannover, Hannover, Germany.
Peatlands are invaluable but threatened ecosystems that store huge amounts of organic carbon globally and emit the greenhouse gasses carbon dioxide (CO) and methane (CH). Trophic interactions of microbial groups essential for methanogenesis are poorly understood in such systems, despite their importance. Thus, the present study aimed at unraveling trophic interactions between fermenters and methanogens in a nitrogen-limited, subarctic, pH-neutral fen.
View Article and Find Full Text PDFFront Neural Circuits
December 2024
Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
[This corrects the article DOI: 10.3389/fncir.2024.
View Article and Find Full Text PDFFront Neural Circuits
December 2024
Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
Functional recovery from brain damage, such as stroke, is a plastic process in the brain. The excitatory glutamate -amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) plays a crucial role in neuronal functions, and the synaptic trafficking of AMPAR is a fundamental mechanism underlying synaptic plasticity. We recently identified a collapsin response mediator protein 2 (CRMP2)-binding compound, edonerpic maleate, which augments rehabilitative training-dependent functional recovery from brain damage by facilitating experience-driven synaptic delivery of AMPARs.
View Article and Find Full Text PDFInt J Pharm
December 2024
Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
Aim: This study focuses on the design and investigation a transethosomal formulation for enhanced topical delivery and improved analgesic activity of caryophyllene oxide. In addition, this work explores new potential mechanisms of analgesic activity of the active compound including alpha-amino-3-hydroxy-5-methyl-4-isooxazole-propionic acid (AMPA) and Cyclooxygenase 2 (COX-2).
Methods: The transethosomal system containing various caryophyllene concentrations was prepared.
Fitoterapia
December 2024
State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, The Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China. Electronic address:
Three new monoterpenes compounds (5S, 8S)-5-(2E-butenyl)-8-methyl propionate-cyclopentanone (1), 1-Oxy, 10-keto-α-myrcene hydroxide (2), (3R,4R)-3-hydroxy-4-isobutenyl-cyclopentyl ester (3), along with eleven known small molecular compounds such as monoterpenes (1-7, 14), coumarin (10), and other small molecular compounds (8, 9, 11-13) were isolated from Seriphidium terrae-albae. The structures were elucidated by NMR, HRESIMS, ECD calculations, and X-ray crystallography. Anti-inflammatory activity test results showed that 9 compounds were detected to inhibit NO secretion by mouse macrophage Raw 264.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!