A mechanistic investigation of hydrodehalogenation using ESI-MS.

Chem Commun (Camb)

Department of Chemistry, University of Victoria, P.O. Box 3065, Victoria, BC V8W3V6, Canada.

Published: December 2013

AI Article Synopsis

  • The hydrodehalogenation of aryl iodides with a palladium catalyst in methanol shows a significant primary kinetic isotope effect when using both CD3OD and CH3OD.
  • This indicates that the process of deprotonation is crucial in the reaction mechanism.
  • The findings highlight the importance of hydrogen atoms in determining reaction rates in this chemical transformation.

Article Abstract

The rate of hydrodehalogenation of aryl iodides with a palladium catalyst in methanol exhibits a strong primary kinetic isotope effect from both CD3OD and CH3OD, suggesting that deprotonation plays a major role in the mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3cc46271dDOI Listing

Publication Analysis

Top Keywords

mechanistic investigation
4
investigation hydrodehalogenation
4
hydrodehalogenation esi-ms
4
esi-ms rate
4
rate hydrodehalogenation
4
hydrodehalogenation aryl
4
aryl iodides
4
iodides palladium
4
palladium catalyst
4
catalyst methanol
4

Similar Publications

Natural plant-derived polysaccharides exhibit substantial potential for treating ulcerative colitis (UC) owing to their anti-inflammatory and antioxidant properties and favorable safety profiles. However, their practical application faces several challenges, including structural instability in gastric acid, imprecise targeting of inflamed regions, and limited intestinal retention times. To address these limitations, pH-responsive, colon-targeting microspheres (pWGPAC MSs) are developed for delivering phosphorylated wild ginseng polysaccharides (pWGP) to alleviate UC.

View Article and Find Full Text PDF

Background: The human gut microbiota develops in concordance with its host over a lifetime, resulting in age-related shifts in community structure and metabolic function. Little is known about whether these changes impact the community's response to microbiome-targeted therapeutics. Providing critical information on this subject, faecal microbiomes of subjects from six age groups, spanning from infancy to 70-year-old adults (n = six per age group) were harvested.

View Article and Find Full Text PDF

Flavonoids are naturally occurring polyphenolic compounds known for their extensive range of biological activities. This review focuses on the inhibitory effects of flavonoids on acetylcholinesterase (AChE) and their potential as therapeutic agents for cognitive dysfunction. AChE, a serine hydrolase that plays a crucial role in cholinergic neurotransmission, is a key target in the treatment of cognitive impairments due to its function in acetylcholine hydrolysis.

View Article and Find Full Text PDF

Background: There is compelling evidence of an inverse association between potassium intake and blood pressure (BP). A potential mechanism for this effect may be dietary potassium-mediated augmentation of endothelium-dependent relaxation. To date, studies have investigated potassium intake supplementation over several weeks in healthy volunteers with variable results on vascular function.

View Article and Find Full Text PDF

Chemoprotective Mechanism of Sodium Thiosulfate Against Cisplatin-Induced Nephrotoxicity Is via Renal Hydrogen Sulfide, Arginine/cAMP and NO/cGMP Signaling Pathways.

Int J Mol Sci

January 2025

Department of Animal Experimentation, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra P.O. Box LG581, Ghana.

Cisplatin is a common and highly effective chemotherapeutic agent whose nephrotoxic side effect is well-characterized. Sodium thiosulfate (STS), an FDA-approved hydrogen sulfide (HS) donor drug, is emerging as a chemoprotective agent against cisplatin-induced nephrotoxicity (CIN). In this study, we investigated the chemoprotective mechanism of STS in a rat model of CIN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!