Wound healing is an innate physiological response that helps restore cellular and anatomic continuity of a tissue. Selective biodegradable and biocompatible polymer materials have provided useful scaffolds for wound healing and assisted cellular messaging. In the present study, guar gum, a polymeric galactomannan, was intrinsically modified to a new cationic biopolymer guar gum alkylamine (GGAA) for wound healing applications. Biologically synthesized silver nanoparticles (Agnp) were further impregnated in GGAA for extended evaluations in punch wound models in rodents. SEM studies showed silver nanoparticles well dispersed in the new guar matrix with a particle size of ~18 nm. In wound healing experiments, faster healing and improved cosmetic appearance were observed in the new nanobiomaterial treated group compared to commercially available silver alginate cream. The total protein, DNA, and hydroxyproline contents of the wound tissues were also significantly higher in the treated group as compared with the silver alginate cream (P < 0.05). Silver nanoparticles exerted positive effects because of their antimicrobial properties. The nanobiomaterial was observed to promote wound closure by inducing proliferation and migration of the keratinocytes at the wound site. The derivatized guar gum matrix additionally provided a hydrated surface necessary for cell proliferation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3794655 | PMC |
http://dx.doi.org/10.1155/2013/912458 | DOI Listing |
Mol Biol Rep
January 2025
Goat Genetics and Breeding Division, ICAR-Central Institute for Research On Goats, Makhdoom, Farah, Mathura, 281 122, Uttar Pradesh, India.
Background: Extracellular matrix (ECM) proteins play a crucial role in regulating the biological properties of adherent cells. For cryopreserved fibroblasts, a favourable ECM environment can help restore their natural morphology and function more rapidly, minimizing post-thaw stress responses.
Methods And Results: This study explored the functional responses of cryopreserved enriched caprine adult dermal fibroblast (cadFibroblast) cells to structural [collagen-IV and rat tail collagen (RTC)] and adhesion ECM proteins (laminin, fibronectin, and vitronectin) under in vitro culture conditions.
BMC Surg
January 2025
Department of Orthopedics, Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, China.
Background: To explore the advantages of a lateral tibial locking plate combined with Jail screw fixation in the treatment of anterolateral tibial plateau collapse fracture (ATPCF).
Methods: A retrospective analysis was conducted on patients with ATPCFs admitted to our hospital from February 2019 to February 2023. Twenty-six patients were successfully included, including 15 males and 11 females, with an average age of 58.
J Orthop Surg Res
January 2025
Department of Orthopaedics, the 960th Hospital of PLA, 25 shifan Road, Tianqiao District, Jinan, Shandong, 250031, China.
Background: One of the common complications in spinal surgery patients is deep surgical site infections (SSIs). Deep SSIs refer to infections that involve the deeper soft tissues of the incision, such as the fascia and muscle layers. This complication can lead to prolonged hospitalization, repeated surgeries, and even life-threatening conditions.
View Article and Find Full Text PDFSuccessful engraftment of skin grafts highly depends on the quality of the wound bed. Good quality of blood vessels near the surface is critical to support the viability of the graft. Ischemic, irradiated scar tissue, bone and tendons will not have the sufficient blood supply.
View Article and Find Full Text PDFInt Wound J
January 2025
Vascular Surgery Unit, Department of General Surgery, Tan Tock Seng Hospital, Singapore, Singapore.
Diabetic foot wounds (DFW) are notoriously difficult to treat owing to poor vascularity, delayed healing and higher rates of infection. Human-derived acellular dermal matrices (ADM) have been used in DFW treatment, utilizing a matrix scaffold for new tissue generation. We investigate the efficacy of a micronized injectable human-derived ADM in the treatment of DFW.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!