Human oncogenic viruses are defined as necessary but not sufficient to initiate cancer. Experimental evidence suggests that the oncogenic potential of a virus is effective in cells that have already accumulated a number of genetic mutations leading to cell cycle deregulation. Current models for viral driven oncogenesis cannot explain why tumor development in carriers of tumorigenic viruses is a very rare event, occurring decades after virus infection. Considering that viruses are mutagenic agents per se and human oncogenic viruses additionally establish latent and persistent infections, we attempt here to provide a general mechanism of tumor initiation both for RNA and DNA viruses, suggesting viruses could be both necessary and sufficient in triggering human tumorigenesis initiation. Upon reviewing emerging evidence on the ability of viruses to induce DNA damage while subverting the DNA damage response and inducing epigenetic disturbance in the infected cell, we hypothesize a general, albeit inefficient hit and rest mechanism by which viruses may produce a limited reservoir of cells harboring permanent damage that would be initiated when the virus first hits the cell, before latency is established. Cells surviving virus generated damage would consequently become more sensitive to further damage mediated by the otherwise insufficient transforming activity of virus products expressed in latency, or upon episodic reactivations (viral persistence). Cells with a combination of genetic and epigenetic damage leading to a cancerous phenotype would emerge very rarely, as the probability of such an occurrence would be dependent on severity and frequency of consecutive hit and rest cycles due to viral reinfections and reactivations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785046 | PMC |
http://dx.doi.org/10.5501/wjv.v2.i2.102 | DOI Listing |
Head Neck
January 2025
Departement de Pathologie, Centre Hospitalo-Universitaire Montpellier, Montpellier, France.
Background: The detection rate of oncogenic human papillomaviruses (HPVs) in sinonasal squamous cell carcinomas (SNSCCs) varies among studies. The mutational landscape of SNSCCs remains poorly investigated.
Methods: We investigated the prevalence and prognostic significance of HPV infections based on p16 protein expression, HPV-DNA detection, and E6/E7 mRNA expression using immunohistochemistry, polymerase chain reaction, and in situ hybridization, respectively.
Cancer Med
February 2025
Centre for Medical Research, Ningbo No.2 Hospital, Ningbo, China.
Background: Hepatocellular carcinoma (HCC) is one of the most common and highly lethal cancers worldwide. RIO kinase 1 (RIOK1), a protein kinase/ATPase that plays a key role in regulating translation and ribosome assembly, is associated with a variety of malignant tumors. However, the role of RIOK1 in HCC remains largely unknown.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
Department of Hepato-Biliary-Pancreatic Surgery, General Surgery, Huadong Hospital, Fudan University, Shanghai, 200040, PR China.
Purpose: Glucose starvation induces the accumulation of disulfides and F-actin collapse in cells with high expression of SLC7A11, a phenomenon termed disulfidptosis. This study aimed to confirm the existence of disulfidptosis in pancreatic ductal adenocarcinoma (PDAC) and elucidate the role of Cancer Susceptibility 8 (CASC8) in this process.
Methods: The existence of disulfidptosis in PDAC was assessed using flow cytometry and F-actin staining.
Oncogene
January 2025
Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Overexpression of uridine-cytidine kinase 2 (UCK2), a key enzyme in the pyrimidine salvage pathway, is implicated in human cancer development, while its regulation under nutrient stress remains to be investigated. Here, we show that under glucose limitation, AMPK phosphorylates glycinamide ribonucleotide formyltransferase (GART) at Ser440, and this modification facilitates its interaction with UCK2. Through its binding to UCK2, GART generates tetrahydrofolate (THF) and thus inhibits the activity of integrin-linked kinase associated phosphatase (ILKAP) for removing AKT1-mediated UCK2-Ser254 phosphorylation under glucose limitation, in which dephosphorylation of UCK2-Ser254 tends to cause Trim21-mediated UCK2 polyubiquitination and degradation.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
Pathological cardiac remodeling is a maladaptive response that leads to changes in the size, structure, and function of the heart. These changes occur due to an acute or chronic stress on the heart and involve a complex interplay of hemodynamic, neurohormonal and molecular factors. As a critical regulator of cell growth, protein synthesis and autophagy mechanistic target of rapamycin complex 1 (mTORC1) is an important mediator of pathological cardiac remodeling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!