Schizophrenia is a severe mental disorder, characterized by behavioral, emotional and cognitive disturbances, which commonly follows a chronic course. Diagnostic accuracy, management plans, treatment evaluation and prognosis are dependent on relatively subjective assessments. Despite extensive research and improvement in imaging technology, as well as modern genetic and molecular methodologies, the biological basis of this disease is still unclear. Therefore, there is a need for objective and valid biological markers. Platelets have often been used as a model in neurobiological research. The accessibility of platelets and their similarities with neurons turns them into an attractive candidate to search for biological markers for diagnosis and for unraveling pathophysiological processes relevant to the etiology of brain disorders, including schizophrenia. The present review addresses the main changes in platelet physiology observed in schizophrenia and its response to antipsychotic medication. We summarize numerous studies demonstrating impaired metabolism, uptake and receptor kinetics of schizophrenia-relevant neurotransmitters, abnormalities in membrane derived phospholipids and polyunsaturated fatty acids, as well as dysfunctions in the mitochondria. These changes fit with the various hypotheses raised for the etiology of schizophrenia, including the dopamine-glutamate hypothesis, the autoimmune hypothesis, the polyunsaturated fatty acid hypothesis and the impaired energy metabolism hypothesis. Despite extensive research in platelets, no conclusive reliable biomarker has been identified yet. This review suggests that the clinical heterogeneity and the biological complexity of schizophrenia lead to the inevitable conclusion that biomarkers will be identified only for subgroups characterized according to the different diagnostic criteria. Moreover, any biomarker would have to be an array of interrelated factors or even a set of several such arrays.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3782191 | PMC |
http://dx.doi.org/10.5498/wjp.v2.i6.124 | DOI Listing |
Neurochem Res
January 2025
Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
The specific pathogeneses of schizophrenia (SCZ) remain an enigma despite extensive research that has implicated both genetic and environmental factors. Recent revelations that dysregulated immune system caused by glial cell overactivation result in neuroinflammation, a key player in neurodegenerative as well as neuropsychiatric disorders including SCZ are providing novel clues on potential therapeutic interventions. Here, we review the roles of glial cells (Dr.
View Article and Find Full Text PDFNeurochem Res
January 2025
Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder characterized by cognitive decline. Despite extensive research, therapeutic options remain limited. Varenicline, an αβ nicotinic acetylcholine receptor agonist, shows promise in enhancing cognitive function.
View Article and Find Full Text PDFDermatitis
January 2025
From the Department of Allergy and Clinical Immunology, Unidade Local de Saúde de São João, Porto, Portugal.
Patent Blue V (PBV) is extensively used in sentinel lymph node identification in cancer surgery, potentially leading to an increased incidence of hypersensitivity reactions. A retrospective analysis was conducted on patients with suspected PBV hypersensitivity, at our center from 2010 to 2023. Skin prick tests (SPT) were performed on all patients, followed by intradermal tests (IDT) if SPT was negative.
View Article and Find Full Text PDFNutr Rev
January 2025
Postgraduate Program in Nutrition, Health Sciences Center, Federal University of Santa Catarina, Florianópolis 88040-370, Brazil.
The World Health Organization recommended the global elimination of industrial trans fats by 2023, leading to a decrease in their use in packaged foods. Nevertheless, a gap remains in the scientific literature regarding the ingredients adopted as substitutes by the food industry. This study aimed to map evidence on substitutes for industrial trans fats in packaged foods, discussing their possible designation in the ingredients lists.
View Article and Find Full Text PDFActa Crystallogr D Struct Biol
February 2025
Université Paris-Saclay, Université Evry, IBISC, 91020 Evry-Courcouronnes, France.
Predicting the 3D structure of RNA is a significant challenge despite ongoing advancements in the field. Although AlphaFold has successfully addressed this problem for proteins, RNA structure prediction raises difficulties due to the fundamental differences between proteins and RNA, which hinder its direct adaptation. The latest release of AlphaFold, AlphaFold3, has broadened its scope to include multiple different molecules such as DNA, ligands and RNA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!