Background: The present study was designed to investigate the hepato protective effect of methanolic extract of Ficus religisoa L., Moraceae, on isoniazid-rifampicin and paracetamol induced hepatotoxicity in rats.
Materials And Methods: Male Wistar albino rats were divided into six groups; group 1 served as a control received vehicle (Distilled water), group 2 served as a toxic control, received isoniazid-rifampicin (100 mg/ kg, i.p.) or paracetamol 200mg/kg, p.o in sterile water, groups 3, 4 and 5 received 100, 200 and 300mg/kg bw, p.o. methanolic extract of F. religisoa along with INH+RIF or paracetamol and group 6 received Liv 52 as reference standard. All the treatment protocols followed 21 days for INH+RIF model and seven days for paracetamol model, after treatment rats were sacrificed and blood was used for biochemical and liver was used for histological studies.
Results: Administration of INH+RIF and paracetamol caused a significant elevation in the levels of liver marker enzymes (P < 0.05 and P < 0.01) and thiobarbituric acid reactive substances (P < 0.001) in experimental rats. Administration of methanolic extracts of F. religisoa significantly prevented isoniazid-rifampicin and paracetamol induced elevation in the levels of serum diagnostic liver marker enzymes and TBARS level in experimental groups of rats. Moreover, total protein and reduced glutathione levels were significantly (P < 0.001) increased in treatment group. The effect of extract was compared with a standard drug, Liv 52. The changes in biochemical parameters were supported by histological profile.
Conclusion: The methanolic extract of F. religisoa protects against isoniazid- rifampicin and paracetamol induced oxidative liver injury in rats.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3807992 | PMC |
http://dx.doi.org/10.4103/0974-8490.118828 | DOI Listing |
Phytomedicine
January 2025
Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, PR China. Electronic address:
J Ethnopharmacol
January 2025
School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, 751003, Odisha, India. Electronic address:
Ethnopharmacological Relevance: Argemone mexicana L. (Papaveraceae), a weed that thrives in the tropical and subtropical areas of South and Central America, Mexico, Caribbean Islands and India. In India, it has been used traditionally to treat vesicular calculus, inflammatory conditions, and hepatobiliary disorders.
View Article and Find Full Text PDFFASEB J
January 2025
Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China.
Acute liver failure (ALF) is a life-threatening condition that occurs when the liver sustains severe damage and rapidly loses its function. The primary cause of ALF is the overdose of acetaminophen (APAP), and its treatment is relatively limited. The involvement of the complement system in the development of ALF has been implicated.
View Article and Find Full Text PDFTheranostics
January 2025
Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
Acute liver failure (ALF) is characterized by rapid hepatic dysfunction, primarily caused by drug-induced hepatotoxicity. Due to the lack of satisfactory treatment options, ALF remains a fatal clinical disease, representing a grand challenge in global health. For the drug repositioning to ALF of mesalamine, which is clinically approved for the treatment of inflammatory bowel disease (IBD), we propose a supramolecular prodrug nanoassembly (SPNs).
View Article and Find Full Text PDFCureus
December 2024
Nephrology, NewYork-Presbyterian Queens, New York, USA.
High anion gap metabolic acidosis (HAGMA) is a common biochemical abnormality in hospitalized patients, often linked to conditions such as lactic acidosis, renal failure, or drug toxicity. A rare etiology, 5-oxoprolinuria, resulting from acetaminophen use, malnutrition, and sepsis, is increasingly recognized in critically ill patients. We report a 29-year-old male with a history of intellectual disability and normal baseline kidney function who was admitted with acute necrotizing pancreatitis and developed severe metabolic acidosis and acute kidney injury (AKI).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!