Background: The present study was designed to investigate the hepato protective effect of methanolic extract of Ficus religisoa L., Moraceae, on isoniazid-rifampicin and paracetamol induced hepatotoxicity in rats.

Materials And Methods: Male Wistar albino rats were divided into six groups; group 1 served as a control received vehicle (Distilled water), group 2 served as a toxic control, received isoniazid-rifampicin (100 mg/ kg, i.p.) or paracetamol 200mg/kg, p.o in sterile water, groups 3, 4 and 5 received 100, 200 and 300mg/kg bw, p.o. methanolic extract of F. religisoa along with INH+RIF or paracetamol and group 6 received Liv 52 as reference standard. All the treatment protocols followed 21 days for INH+RIF model and seven days for paracetamol model, after treatment rats were sacrificed and blood was used for biochemical and liver was used for histological studies.

Results: Administration of INH+RIF and paracetamol caused a significant elevation in the levels of liver marker enzymes (P < 0.05 and P < 0.01) and thiobarbituric acid reactive substances (P < 0.001) in experimental rats. Administration of methanolic extracts of F. religisoa significantly prevented isoniazid-rifampicin and paracetamol induced elevation in the levels of serum diagnostic liver marker enzymes and TBARS level in experimental groups of rats. Moreover, total protein and reduced glutathione levels were significantly (P < 0.001) increased in treatment group. The effect of extract was compared with a standard drug, Liv 52. The changes in biochemical parameters were supported by histological profile.

Conclusion: The methanolic extract of F. religisoa protects against isoniazid- rifampicin and paracetamol induced oxidative liver injury in rats.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3807992PMC
http://dx.doi.org/10.4103/0974-8490.118828DOI Listing

Publication Analysis

Top Keywords

paracetamol induced
16
methanolic extract
12
paracetamol
8
induced hepatotoxicity
8
isoniazid-rifampicin paracetamol
8
group served
8
control received
8
extract religisoa
8
inh+rif paracetamol
8
elevation levels
8

Similar Publications

mTOR/HIF-1α pathway-mediated glucose reprogramming and macrophage polarization by Sini decoction plus ginseng soup in ALF.

Phytomedicine

January 2025

Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, PR China. Electronic address:

Article Synopsis
  • Acute liver failure (ALF) is a severe condition with high mortality rates, prompting this study to explore the effects of Sini Decoction plus Ginseng Soup (SNRS) on liver health and immune response.
  • Using bioinformatics and network pharmacology, the research identified key glycolysis-related genes influencing macrophage polarization and found that SNRS can improve liver injury outcomes and survival rates in an ALF model.
  • The study concluded that SNRS may effectively treat ALF by altering macrophage behavior and glucose metabolism through the mTOR/HIF-1α pathway, revealing its potential as a therapeutic option.
View Article and Find Full Text PDF

Ethnopharmacological Relevance: Argemone mexicana L. (Papaveraceae), a weed that thrives in the tropical and subtropical areas of South and Central America, Mexico, Caribbean Islands and India. In India, it has been used traditionally to treat vesicular calculus, inflammatory conditions, and hepatobiliary disorders.

View Article and Find Full Text PDF

The C3/C3aR pathway exacerbates acetaminophen-induced mouse liver injury via upregulating podoplanin on the macrophage.

FASEB J

January 2025

Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China.

Acute liver failure (ALF) is a life-threatening condition that occurs when the liver sustains severe damage and rapidly loses its function. The primary cause of ALF is the overdose of acetaminophen (APAP), and its treatment is relatively limited. The involvement of the complement system in the development of ALF has been implicated.

View Article and Find Full Text PDF

Acute liver failure (ALF) is characterized by rapid hepatic dysfunction, primarily caused by drug-induced hepatotoxicity. Due to the lack of satisfactory treatment options, ALF remains a fatal clinical disease, representing a grand challenge in global health. For the drug repositioning to ALF of mesalamine, which is clinically approved for the treatment of inflammatory bowel disease (IBD), we propose a supramolecular prodrug nanoassembly (SPNs).

View Article and Find Full Text PDF

High anion gap metabolic acidosis (HAGMA) is a common biochemical abnormality in hospitalized patients, often linked to conditions such as lactic acidosis, renal failure, or drug toxicity. A rare etiology, 5-oxoprolinuria, resulting from acetaminophen use, malnutrition, and sepsis, is increasingly recognized in critically ill patients. We report a 29-year-old male with a history of intellectual disability and normal baseline kidney function who was admitted with acute necrotizing pancreatitis and developed severe metabolic acidosis and acute kidney injury (AKI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!