The visual cortex is sensitive to emotional stimuli. This sensitivity is typically assumed to arise when amygdala modulates visual cortex via backwards connections. Using human fMRI, we compared dynamic causal connectivity models of sensitivity with fearful faces. This model comparison tested whether amygdala modulates distinct cortical areas, depending on dynamic or static face presentation. The ventral temporal fusiform face area showed sensitivity to fearful expressions in static faces. However, for dynamic faces, we found fear sensitivity in dorsal motion-sensitive areas within hMT+/V5 and superior temporal sulcus. The model with the greatest evidence included connections modulated by dynamic and static fear from amygdala to dorsal and ventral temporal areas, respectively. According to this functional architecture, amygdala could enhance encoding of fearful expression movements from video and the form of fearful expressions from static images. The amygdala may therefore optimize visual encoding of socially charged and salient information.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6618361 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.2992-13.2013 | DOI Listing |
Elife
January 2025
Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, United States.
The central amygdala (CeA) has emerged as an important brain region for regulating both negative (fear and anxiety) and positive (reward) affective behaviors. The CeA has been proposed to encode affective information in the form of valence (whether the stimulus is good or bad) or salience (how significant is the stimulus), but the extent to which these two types of stimulus representation occur in the CeA is not known. Here, we used single cell calcium imaging in mice during appetitive and aversive conditioning and found that majority of CeA neurons (~65%) encode the valence of the unconditioned stimulus (US) with a smaller subset of cells (~15%) encoding the salience of the US.
View Article and Find Full Text PDFFront Syst Neurosci
December 2024
Universidade Federal de Goias, School of Electrical, Mechanical and Computer Engineering, Goiânia, Brazil.
Dysfunction in fear and stress responses is intrinsically linked to various neurological diseases, including anxiety disorders, depression, and Post-Traumatic Stress Disorder. Previous studies using in vivo models with Immediate-Extinction Deficit (IED) and Stress Enhanced Fear Learning (SEFL) protocols have provided valuable insights into these mechanisms and aided the development of new therapeutic approaches. However, assessing these dysfunctions in animal subjects using IED and SEFL protocols can cause significant pain and suffering.
View Article and Find Full Text PDFPsychol Rep
January 2025
Mind Networks Association LLC, Wilmington, DE, USA.
Fear, an emotion ingrained through evolutionary adaptation, triggers protective responses to ward off threats. Yet, in some instances, the neural networks tied to fear can lead to psychosomatic ailments and behavioural issues, including the maladaptive type. This study aims to hypothesize about fear, probing its neurophysiological traits and its impact on cognitive-emotional facets of the psyche.
View Article and Find Full Text PDFJ Neuroimaging
January 2025
Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
Background And Purpose: Anxiety during pregnancy is common, and exposure to heightened anxiety during pregnancy may influence children's brain development and functioning. However, it is unclear if exposure to low levels of anxiety in utero would also impact the developing brain. The current prospective and longitudinal study included 40 healthy pregnant women without pregnancy complications or previous diagnosis of anxiety disorders.
View Article and Find Full Text PDFeNeuro
January 2025
Tufts University School of Medicine, Department of Neuroscience, Boston, MA, USA.
Psychiatric disorders, including anxiety and depression, are highly comorbid in people with epilepsy. However, the mechanisms mediating the shared pathophysiology are currently unknown. There is considerable evidence implicating the basolateral amygdala (BLA) in the network communication of anxiety and fear, a process demonstrated to involve parvalbumin-positive (PV) interneurons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!