The aim of this study was to identify the molecular signals produced in human endothelial cells (ECs) by the interaction of α5β1 integrin with soluble vascular endothelial growth factor receptor-1 (sVEGFR-1) present in the extracellular matrix. We generated a gene expression profile of ECs adhering to sVEGFR-1 or to fibronectin, the classic extracellular matrix ligand for α5β1 integrin or in a nonadhering condition. Several biological pathways were differently modulated, 3 protein kinase C substrates [adducin, myristoylated alanine-rich protein kinase C substrate (MARCKS), and radixin] were differently expressed and phosphorylated when cells adhering to sVEGFR-1 were compared with those adhering to fibronectin. Rac1 activation and Gα13 protein involvement through the interaction with radixin were also detected after attachment to sVEGFR-1, and these responses depended on active VEGFR-2 signaling. On sVEGFR-1, ECs exhibited a motile phenotype that was consistent with the abundant presence of MARCKS, a stabilizer of dynamic adhesions. Moreover, ECs silenced for radixin expression no longer responded to the proangiogenic VEGFR-1-derived peptide 12. We propose that the presence of sVEGFR-1 in the EC microenvironment directs α5β1 integrin signaling to generate a dynamic, motile phenotype. Our findings also provide new insights into the mechanism of action of proangiogenic peptide 12, relevant to a therapeutic perspective.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.12-225771DOI Listing

Publication Analysis

Top Keywords

α5β1 integrin
12
soluble vascular
8
vascular endothelial
8
endothelial growth
8
growth factor
8
factor receptor-1
8
extracellular matrix
8
adhering svegfr-1
8
protein kinase
8
motile phenotype
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!