Bio-inspired band gap engineering of zinc oxide by intracrystalline incorporation of amino acids.

Adv Mater

Department of Materials Science and Engineering and the Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, 32000, Haifa, Israel.

Published: January 2014

Bandgap engineering of zinc oxide semiconductors can be achieved using a bio-inspired method. During a bioInspired crystallization process, incorporation of amino acids into the crystal structure of ZnO induces lattice strain that leads to linear bandgap shifts. This allows for fine tuning of the bandgap in a bio-inspired route.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201303596DOI Listing

Publication Analysis

Top Keywords

engineering zinc
8
zinc oxide
8
incorporation amino
8
amino acids
8
bio-inspired band
4
band gap
4
gap engineering
4
oxide intracrystalline
4
intracrystalline incorporation
4
acids bandgap
4

Similar Publications

Epitaxy Orientation and Kinetics Diagnosis for Zinc Electrodeposition.

ACS Nano

December 2024

College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, P. R. China.

An accurate assessment of the electrodeposition mechanism is essential for evaluating the electrochemical stability and reversibility of the metal anodes. Multiple strategies aimed at uniform Zn deposition have been extensively reported, yet it is challenging to clarify the Zn crystal growth regularity and activity due to the obscured physicochemical properties of as-deposited Zn. Herein, we present a protocol for elucidating the controlled epitaxial growth process of Zn crystals and quantifying their surface electrochemical activity using scanning electrochemical microscopy.

View Article and Find Full Text PDF

This study explores the potential of DNA hydrogels as a novel approach for diagnosing and treating Oral Squamous Cell Carcinoma (OSCC). In the experiment, DNA hydrogels are synthesized and loaded with Zinc Oxide Nanoparticles (ZnO NPs) and Cisplatin. In vitro experiments evaluated drug delivery efficacy and the effect on cancer cell viability.

View Article and Find Full Text PDF

The use of bioactive compounds in plants as reducing, stabilizing, and capping agents in nanoparticle manufacturing is an exceptionally eco-friendly approach. This work used rosehip seed extract, acquired by automatic solvent extraction, in the microwave-assisted green production of zinc oxide nanoparticles (ZnO NPs). The total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity of the extracted materials and nanoparticles were assessed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays.

View Article and Find Full Text PDF

Regulating Zn Deposition via Honeycomb-like Covalent Organic Frameworks for Stable Zn Metal Anodes.

ACS Appl Mater Interfaces

December 2024

Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.

The irreversible chemistry of the Zn anode, attributed to parasitic reactions and the growth of zinc dendrites, is the bottleneck in the commercialization of aqueous zinc-ion batteries. Herein, an efficient strategy via constructing an organic protective layer configured with a honeycomb-like globular-covalent organic framework (G-COF) was constructed to enhance the interfacial stability of Zn anodes. Theoretical analyses disclose that the methoxy and imine groups in G-COF have more negative adsorption energy and electrostatic potential distribution, favorable Zn adsorption, and diffusion.

View Article and Find Full Text PDF

The biosynthesis of nanomaterials is a vast and expanding field of study due to their applications in a variety of fields, particularly the pharmaceutical and biomedical fields. Various synthetic routes, including physical and chemical methods, have been developed in order to generate metal nanoparticles (NPs) with definite shapes and sizes. In this review, focused on the recent advancements in the green synthetic methods for the generation of silver, zinc and copper NPs with simple and eco-friendly approaches and the potential of the biosynthesized metal and metal oxide NPs as alternative and therapeutic agent for the treatment of inflammatory diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!