Neurokinin-1 receptors (NK1Rs) have been shown to mediate alcohol and opiate, but not cocaine reward in rodents. We recently reported that NK1R antagonism also blocks stress-induced reinstatement of alcohol seeking in rats, but it is presently unknown whether these antirelapse properties extend to other drug classes. Although some work has suggested that intracranial substance P (SP) infusion reinstates cocaine seeking following extinction, no studies have indicated a direct role for the NK1R in reinstatement of cocaine seeking. Here, we explored the effect of the NK1R antagonist L822429 on yohimbine-induced reinstatement of alcohol or cocaine seeking in Long-Evans rats. Consistent with our previous findings with footshock-induced reinstatement of alcohol seeking in Wistar rats, we found that L822429 attenuates yohimbine-induced reinstatement of alcohol seeking, but does not affect baseline alcohol self-administration. We observed a similar suppression of yohimbine-induced reinstatement of cocaine seeking by L822429, and found that Long-Evans rats exhibit greater sensitivity to NK1R antagonism than Wistar rats. Accordingly, Long-Evans rats exhibit differences in the expression of NK1Rs in some subcortical brain regions. Combined, our findings suggest that while NK1R antagonism differentially influences alcohol- and cocaine-related behavior, this receptor mediates stress-induced seeking of both drugs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3957103 | PMC |
http://dx.doi.org/10.1038/npp.2013.309 | DOI Listing |
Sci Rep
January 2025
Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, No. 38, Italia Ave., Ghods St, Keshavarz Boulevard, Tehran, Iran.
Substance Use Disorder (SUD) is a medical condition where an individual compulsively misuses drugs or alcohol despite knowing the negative consequences. The anterior cingulate cortex (ACC) has been implicated in various types of SUDs, including nicotine, heroin, and alcohol use disorders. Our research aimed to investigate the effects of deep brain stimulation (DBS) in the ACC as a potential therapeutic approach for morphine use disorder.
View Article and Find Full Text PDFPharmacol Biochem Behav
January 2025
Department of Psychology, Arizona State University, Tempe, AZ 85257, United States of America. Electronic address:
Glutamatergic signaling is one of the primary targets of actions of alcohol in the brain, and dysregulated excitatory transmission in the prefrontal cortex (PFC) may contribute problematic drinking and relapse. A prominent component of glutamate signaling is the type 5 metabotropic glutamate (mGlu5) receptor. However, little is known about the role of this receptor type in subregions of the PFC that regulate either alcohol intake or alcohol-seeking behavior.
View Article and Find Full Text PDFPhysiol Behav
December 2024
Molecular and Behavioral Neuroscience Laboratory, Pharmacology Department, Universidade Federal de São Paulo, Brazil.
Alcohol use disorder (AUD) is a condition with multifactorial causes, including biopsychosocial factors. Childhood exposure to stress may increase susceptibility to AUD in adulthood. Despite its significance, the interaction between stress and AUD remains unclear.
View Article and Find Full Text PDFMolecules
November 2024
Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan.
is a red macroalga known for its bioactive compounds with antioxidant, anti-inflammatory, and skin-regenerative properties. The study aimed to examine their effects on UV protection, collagen synthesis, fibroblast proliferation, and pigmentation modulation. Bioactive compounds were extracted using two solvents, producing ethanol extract (FE) and alkaline extracts (AE).
View Article and Find Full Text PDFPsychopharmacology (Berl)
December 2024
Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA, 30602, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!