The aim of this study was to evaluate the water sorption and solubility of different adhesives. Adper Easy Bond, Adper Single Bond Plus, Bond Force, Clearfil SE Bond (bonding resin only), and Xeno IV were the materials evaluated. Ten disks of each adhesive were made in Teflon molds and evaporation of any volatile components was allowed. The disks were weighed daily in an analytical balance until a constant mass was obtained (m1). Disks were then immersed in water for 12 months when their wet weight was recorded (m2). The disks were again weighed daily until a constant mass was obtained and the final weight recorded (m3). Water sorption and solubility (percentages) were calculated using the recorded mass values. Kruskal-Wallis tests were used to compare the average water sorption and solubility among the different adhesives. Mann-Whitney tests with a Bonferroni correction were used to determine the pairwise differences between adhesives in water sorption and solubility. The level of significance was set at 0.05. Water sorption and solubility were significantly different among the groups (p<0.05). Pairwise comparisons showed no significant differences (p>0.05) between Adper Single Bond Plus and Bond Force, or between Clearfil SE Bond and Xeno IV in either water sorption or solubility. Xeno IV did not differ from Adper Easy Bond in water sorption (p>0.05). Water sorption and solubility of all-in-one adhesives increased with time, and the rates of increase were composition-dependent. The results suggest that monomers other than HEMA contribute to water sorption and solubility of adhesive systems from different categories.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1590/0103-6440201302267 | DOI Listing |
ACS ES T Water
January 2025
School of Earth and Environmental Sciences, Queens College, City University of New York, Queens, New York 11367, United States.
Scaling minerals, such as barite, can cause detrimental consequences for oil/gas pipelines and water systems, but their formation can be inhibited by organic chelators such as ethylenediaminetetraacetic acid (EDTA). Here, we resolve how EDTA affects sorption and desorption of Pb at the barite (001) surface using a combination of X-ray scattering and microscopy measurements. In the presence of EDTA, Pb incorporated in the topmost part of the barite surface and adsorbed as inner-sphere complexes on the surface.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
ConspectusFor chemical reactions with complex pathways, it is extremely difficult to adjust the catalytic performance. The previous strategies on this issue mainly focused on modifying the fine structures of the catalysts, including optimization of the geometric/electronic structure of the metal nanoparticles (NPs), regulation of the chemical composition/morphology of the supports, and/or adjustment of the metal-support interactions to modulate the reaction kinetics on the catalyst surface. Although significant advances have been achieved, the catalytic performance is still unsatisfactory.
View Article and Find Full Text PDFJ Prosthodont Res
January 2025
Department of Comprehensive Dentistry, UT Health San Antonio, San Antonio, USA.
Purpose: To determine the effects of K18 quaternary ammonium methacryloxy silane (QAS) on tissue conditioner materials and their antimicrobial properties.
Methods: 30% K18 QAS in methyl methacrylate (MMA; K18-MMA; 0%, 15%, and 20% w/w) was incorporated into a commercial tissue conditioner (Coe comfort). The degree of curing (Shore A hardness), hydrophilicity (contact angle), flow, liquid sorption, mass loss, and antimicrobial properties of Streptococcus mutans, Streptococcus sanguinis, and Candida albicans were determined.
Environ Geochem Health
January 2025
Institute of Soil and Environmental Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, 46300, Pakistan.
Although the use of biochar as an adsorbent for the removal of various pollutants from wastewater is well established, the use of biochar/modified biochar for the scavenging of antibiotics from aqueous media in the Fenton-like system receives less attention. The highest kasugamycin (KSM) adsorption capacity (5.0 mg g) was obtained from the pristine biochar at the lowest initial pH of 3 in Fenton-like system.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Chemistry, University of North Texas1508 W Mulberry St, Denton, TX, 76201, USA.
Efficient removal of TcO from radioactive effluents while recovering drinking water remains a challenge. Herein, an excellent ReO (a nonradioactive surrogate of TcO ) scavenger is presented through covalently bonding imidazolium poly(ionic liquids) polymers with an ionic porous aromatic framework (iPAF), namely iPAF-P67, following an adsorption-site density-addition strategy. It shows rapid sorption kinetics, high uptake capacity, and exceptional selectivity toward ReO .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!